【题目】已知正方体的棱长为,点分别棱楼的中点,下列结论中正确的是( )
A.四面体的体积等于B.平面
C.平面D.异面直线与所成角的正切值为
科目:高中数学 来源: 题型:
【题目】如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的处恰有一可旋转光源满足甲水果生长的需要,该光源照射范围是,点在直径上,且.
(1)若米,求的长;
(2)设, 求该空地产生最大经济价值时种植甲种水果的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点(都在轴上方),且.
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,离心率,点在椭圆上.
(1)求椭圆的标准方程;
(2)设点是椭圆上一点,左顶点为,上顶点为,直线与轴交于点,直线与轴交于点,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线是过点,倾斜角为的直线,以直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(Ⅰ)求曲线的普通方程和曲线的一个参数方程;
(Ⅱ)曲线与曲线相交于, 两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com