精英家教网 > 高中数学 > 题目详情

【题目】已知正方体的棱长为,点分别棱楼的中点,下列结论中正确的是(

A.四面体的体积等于B.平面

C.平面D.异面直线所成角的正切值为

【答案】BD

【解析】

根据直线与平面的位置关系可知不正确;根据线面垂直的判定定理可知正确;根据空间向量夹角的坐标公式可知正确;用正方体体积减去四个正三棱锥的体积可知不正确.

解:延长分别与的延长线交于,连接,设的延长线交于,连接,交,连 相交,故与平面相交,所以不正确;

,且相交,所以平面,故正确;

为原点,分别为轴建立空间直角坐标系,利用空间向量的夹角可得异面直线的夹角的正切值为,故正确;

四面体的体积等于正方体的体积减去四个正三棱锥的体积,即为,故不正确.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知时,函数有极值

(1)求实数的值;

(2)若方程有3个实数根,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,且满足

(1)求A

(2)若D为边BC上一点,且b=6,AD=2,求a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在圆E上,过点的直线l与圆E相切.

求圆E的方程;

求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的处恰有一可旋转光源满足甲水果生长的需要,该光源照射范围是,在直径上,且

1)若米,求的长;

2)设, 求该空地产生最大经济价值时种植甲种水果的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点都在轴上方),且.

(1)求椭圆的方程;

(2)当为椭圆与轴正半轴的交点时,求直线方程;

(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.

1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;

2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,离心率,点在椭圆上.

1)求椭圆的标准方程;

2)设点是椭圆上一点,左顶点为,上顶点为,直线轴交于点,直线轴交于点,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线是过点,倾斜角为的直线,以直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程是

(Ⅰ)求曲线的普通方程和曲线的一个参数方程;

(Ⅱ)曲线与曲线相交于 两点,求的值.

查看答案和解析>>

同步练习册答案