精英家教网 > 高中数学 > 题目详情
若{an}是等差数列,首项公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{an}的前n项和Sn>0成立的最大自然数n是(  )
分析:由题意可知数列是递减数列,由a2013(a2012+a2013)<0求出公差的范围,确定出数列{an}的前2012项均为正数,从第2013项开始全为负值,然后再由a2013(a2012+a2013)<0得到a2012+a2013>0.进一步代入等差数列的前n项和公式得到结论.
解答:解:由题意可得数列{an}单调递减,
由a2013(a2012+a2013)<0可得:
(a1+2012d)(2a1+4023d)<0,解得-
4023
2
d
<a1<-2012d,
故可得a2013=a1+2012d<0,a2012=a1+2011d>0,
故数列{an}的前2012项均为正数,从第2013项开始全为负值,
又a2013(a2012+a2013)<0,
∴a2012+a2013>0.
则S4023=4023a2012<0,S4024=
(a2012+a2013)×4024
2
>0

故使数列{an}的前n项和Sn>0成立的最大自然数n是4024.
故选D.
点评:本题考查了等差数列的前n项和,考查了对递减数列的项的符号的判断,关键在于分清从那一项开始为负值,且判出正负相邻两项和的符号,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,a2=a(a>0).数列{bn}满足bn=anan+1(n∈N*).
(1)若{an}是等差数列,且b3=12,求a的值及{an}的通项公式;
(2)若{an}是等比数列,求{bn}的前项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区二模)对数列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,则称{an}为k阶递归数列.给出下列三个结论:
①若{an}是等比数列,则{an}为1阶递归数列;
②若{an}是等差数列,则{an}为2阶递归数列;
③若数列{an}的通项公式为an=n2,则{an}为3阶递归数列.
其中,正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若{an}是等差数列,首项 a1>0,a2011+a2012>0,a2011•a2012<0,则使前n项和Sn最大的自然数n是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若{an}是等差数列,首项a1>0,a2013+a2014>0,a2013•a2014<0,则使数列{an}的前n项和Sn>0成立的最大自然数n是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区一模)记数列{an}的前n项和为Sn,所有奇数项之和为S′,所有偶数项之和为S″.
(1)若{an}是等差数列,项数n为偶数,首项a1=1,公差d=
3
2
,且S″-S′=15,求Sn
(2)若无穷数列{an}满足条件:①Sn+1=1-
3
5
Sn
(n∈N*),②S′=S″.求{an}的通项;
(3)若{an}是等差数列,首项a1>0,公差d∈N*,且S′=36,S″=27,请写出所有满足条件的数列.

查看答案和解析>>

同步练习册答案