精英家教网 > 高中数学 > 题目详情

在①.1{0,1,2,3};②.{1}∈{0,1,2,3};③.{0,1,2,3}{0,1,2,3};

④.{0}上述四个关系中,错误的个数是:                                        (    )

A.1个                        B.2个                    C.3个                       D.4个

 

 

【答案】

B

【解析】①.②错误. 故选B

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、设f(x)=x3+x-8,现用二分法求方程x3+x-8=0在区间(1,2)内的近似解,计算得f(1)<0,f(1.5)<0,f(1.75)<0,f(2)>0,则方程的根所在的区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
x2+a

在探究a=1时,函数f(x)在区间[0,+∞)上的最大值问题.为此,我们列表如下
y 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x)在[0,+∞)(a=1)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)写出函数f(x)(a=1)的定义域,并求f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列各式中错误的个数是(  )
①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1}.

查看答案和解析>>

科目:高中数学 来源:2008年高考预测卷数学科(一)新课标 题型:044

已知函数y=f(x)满足:

(1)分别写出x∈[0,1)时y=f(x)的解析式f1(x)和x∈[1,2)时y=f(x)的解析式f2(x);并猜想x∈[n,n+1),n≥-1,n∈Z时y=f(x)的解析式fn+1(x)(用x和n表示)(不必证明)

(2)当(n≥-1,n∈Z)时,y=fn+1(x)x∈[n,n+1),n≥-1,n∈Z的图象上有点列An+1(x,f(x))和点列Bn+1(n+1,f(n+1)),线段An+1Bn+2与线段Bn+1+An+2的交点Cn+1,求点Cn+1的坐标(an+1(x),bn+1(x));

(3)在前面(1)(2)的基础上,请你提出一个点列Cn+1(an+1(x),bn+1(x))的问题,并进行研究,并写下你研究的过程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

继“三鹿奶粉”,“瘦肉精”,“地沟油”等事件的发生之后,食品安全问题屡屡发生,引起了国务院的高度重视.为了加强食品的安全,某食品安检部门调查一个海水养殖场的养殖鱼的有关情况,安检人员从这个海水养殖场中不同位置共捕捞出100条鱼,称得每条鱼的重量(单位:kg),并将所得数据进行统计得下表.若规定超过正常生长的速度为1.0~1.2kg/年的比重超过15%,则认为所饲养的鱼有问题,否则认为所饲养的鱼没有问题.
鱼的质量[1.00,1.05)[1.05,1.1)[1.10,1.15)[1.15,1.2)[1.20,1.25)[1.25,1.30)
鱼的条数320353192
(Ⅰ)根据数据统计表,估计数据落在[1.20,1.30)中的概率约为多少,并判断此养殖场所饲养的鱼是否存在问题?
(Ⅱ)上面捕捞的100条鱼中间,从重量在[1.00,1.05)和[[1.25,1.30)的鱼中,任取2条鱼来检测,求恰好所取得鱼重量[1.00,1.05)和[[1.25,1.30)各有1条的概率.

查看答案和解析>>

同步练习册答案