(本题满分15分)定义在上的函数,对任意的,都有成立,且当时,.
(1)试求的值;
(2)证明:对任意都成立;
(3)证明:在上是减函数;
(4)当时,解不等式.
科目:高中数学 来源:2011-2012学年浙江省名校新高考研究联盟高三第二次联考理科数学试卷(解析版) 题型:解答题
(本题满分15分)如图,分别过椭圆E:左右焦点、的动直线l1、l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率、、、满足.已知当l1与x轴重合时,,.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省桐乡市高三10月月考文科数学 题型:填空题
22.(本题满分15分)已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值;
|
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三下学期第二次统练文科数学 题型:解答题
(本题满分15分)设椭圆 C1:()的一个顶点与抛物线 C2: 的焦点重合,F1,F2 分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 F2 的直线 与椭圆 C 交于 M,N 两点.
(I)求椭圆C的方程;
(II)是否存在直线 ,使得 ,若存在,求出直线 的方程;若不存在,说明理由;
(III)若 AB 是椭圆 C 经过原点 O 的弦,MN//AB,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省三校高三联考理科数学 题型:解答题
(本题满分15分) 已知抛物线的顶点是椭圆的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线的方程;
(2)已知动直线过点,交抛物线于、两点.
若直线的斜率为1,求的长;
是否存在垂直于轴的直线被以为直径的圆所截得的弦长恒为定值?如果存在,求出的方程;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三高考模拟试题理数 题型:解答题
(本题满分15分)如图,已知直线与抛物线和圆都相切,是的焦点.
(1)求与的值;
(2)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以为邻边作平行四边形,证明:点在一条定直线上;
(3)在(2)的条件下,记点所在的定直线为,直线与轴交点为,连接交抛物线于两点,求的面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com