精英家教网 > 高中数学 > 题目详情
如图,AB是圆O的直径,G是AB延长线上的一点,GCD是圆O的割线,过点G作AG的垂线,交直线AC于点E,交直线 AD于点F,过点G作圆O的切线,切点为H.
(1)求证:C,D,E,F四点共圆;
(2)若GH=8,GE=4,求EF的长.
考点:与圆有关的比例线段
专题:选作题,立体几何
分析:(1)连接DB,利用AB是⊙O的直径,可得∠ADB=90°,在Rt△ABD和Rt△AFG中,∠ABD=∠AFE,又同弧所对的圆周角相等可得∠ACD=∠ABD,进而得到∠ACD=∠AFE即可证明四点共圆;
(2)由C,D,E,F四点共圆,利用共线定理可得GE•GF=GC•GD.由GH是⊙O的切线,利用切割线定理可得GH2=GC•GD,进而得到GH2=GE•GF即可.
解答: 解:(1)连接DB,∵AB是⊙O的直径,∴∠ADB=90°,
在Rt△ABD和Rt△AFG中,∠ABD=∠AFE,
又∵∠ABD=∠ACD,∠ACD=∠AFE.
∴C,D,E,F四点共圆;
(2)∵C,D,E,F四点共圆,∴GE•GF=GC•GD.
∵GH是⊙O的切线,∴GH2=GC•GD,∴GH2=GE•GF.
又因为GH=8,GE=4,所以GF=16.
∴EF=GF-GE=12.
点评:熟练掌握圆的切线的性质、同弧所对的圆周角相等、四点共圆的判定方法、切割线定理、割线定理等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题p:2+2=5; 命题q:3>2,则下列各项中,正确的是(  )
A、p或q为真命题,q为假命题
B、p且q为假命题,¬q为真命题
C、p且q为假命题,¬q为假命题
D、p且q为假命题,p或q为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的公比q=2,前n项和为Sn,则
S5
a4
=(  )
A、2
B、4
C、
31
8
D、
31
4

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两位同学参加学校安排的3次体能测试,规定按顺序测试,一旦测试合格就不必参加以后的测试,否则3次测试都要参加.甲同学3次测试每次合格的概率组成一个公差为
1
8
的等差数列,他第一次测试合格的概率不超过
1
2
,且他直到第二次测试才合格的概率为
9
32
,乙同学3次测试每次测试合格的概率均为
2
3
,每位同学参加的每次测试是否合格相互独立.
(Ⅰ)求甲同学第一次参加测试就合格的概率P;
(Ⅱ)设甲同学参加测试的次数为m,乙同学参加测试的次数为n,求ξ=m+n的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+x,x≤1
log
1
3
x,x>1
,若对任意的x∈R,不等式f(x)≤m2-
3
4
m恒成立,则实数m的取值范围是(  )
A、(-∞,-
1
4
]
B、(-∞,-
1
4
]∪[1,+∞)
C、[1,+∞)
D、[-
1
4
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2-4x+3,x∈[1,4],则f(x)的最小值为(  )
A、-1B、0C、3D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

M=
x2+y2
+
x2+(y-1)2
+
(x-1)2+y2
+
(x-1)2+(y-1)2
,当x,y变化时M的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R).
(1)若函数f(x)的图象过点(-2,1),且方程f(x)=0有且只有一个根,求f(x)的表达式;
(2)在(1)的条件下,当x∈[-1,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+a
2x2+1
(x∈R)是奇函数.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的值域.

查看答案和解析>>

同步练习册答案