【题目】已知椭圆的左右焦点分别为
,
,点
,
是椭圆
的左右顶点,点
是椭圆
上一动点,
的周长为6,且直线
,
的斜率之积为
.
(1)求椭圆的方程;
(2)若、
为椭圆
上位于
轴同侧的两点,且
,求四边形
面积的取值范围.
【答案】(1) (2)
【解析】
(1)根据题意,得到,
,再由
,求出
,
,即可得出椭圆方程;
(2)由得
,延长
交椭圆
于点
,设
,
,直线
的方程为
,联立直线
与椭圆方程,根据韦达定理,弦长公式,以及三角形面积公式,得到四边形
的面积
,令
,
,得到
,进而可得出结果.
(1)∵的周长为6,∴
,即
,①
设,因为点
,
是椭圆
的左右顶点,则
,
,
因为直线,
的斜率之积为
,
所以,即
,
又,所以
,所以
②
联立①②及,解得
,
,
.
∴椭圆的方程为
;
(2)∵,∴
,
延长交椭圆
于点
,设
,
,
由(1)知,
,直线
的方程为
,
联立,得
.
∴,
.
由对称性可知,,设
与
的距离为
,
则四边形的面积
.
∴
.
令,
.
∴.
易知:在
上单调递减,∴
.
故四边形面积的取值范围为
.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos4x+sin2x,下列结论中错误的是( )
A. f(x)是偶函数
B. 函数f(x)最小值为
C. 是函数f(x)的一个周期
D. 函数f(x)在内是减函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试。现对测试数据进行分析,得到如图所示的频率分布直方图:
(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).
(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程近似地服从正态分布
,经计算第(1)问中样本标准差
的近似值为50。用样本平均数
作为
的近似值,用样本标准差
作为
的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.
参考数据:若随机变量服从正态分布,则
,
,
.
(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券3万元。已知硬币出现正、反面的概率都是0.5方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次。若掷出正面,遥控车向前移动一格(从到
)若掷出反面遥控车向前移动两格(从
到
),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第
格的概率为P试证明
是等比数列,并求参与游戏一次的顾客获得优惠券金额的期望值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当函数在点
处的切线方程为
,求函数
的解析式;
(2)在(1)的条件下,若是函数
的零点,且
,求
的值;
(3)当时,函数
有两个零点
,且
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.
点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,
点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:
.
设,由于
的值很小,因此在近似计算中
,则r的近似值为
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某媒体为调查喜爱娱乐节目是否与观众性别有关,随机抽取了30名男性和30名女性观众,抽查结果用等高条形图表示如图:
(1)根据该等高条形图,完成下列列联表,并用独立性检验的方法分析,能否在犯错误的概率不超过0.05的前提下认为喜欢娱乐节目
与观众性别有关?
(2)从性观众中按喜欢节目与否,用分层抽样的方法抽取5名做进一步调查.从这5名中任选2名,求恰有1名喜欢节目
和1名不喜欢节目
的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,与
都是边长为2的正三角形,平面
平面
,
平面
,
.
(1)证明:直线平面
(2)求直线与平面
所成的角的大小;
(3)求平面与平面
所成的二面角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com