精英家教网 > 高中数学 > 题目详情
18.已知p:{x|x2-8x-20≤0},q:{x|$\frac{{x-({m+1})}}{{x+({m-1})}}$≤0,m>0},若¬p是¬q的必要而不充分条件,则实数m的取值范围是[9,+∞).

分析 分别求出关于p,q的不等式,根据集合的包含关系得到关于m的不等式组,解出即可.

解答 解:由x|x2-8x-20≤0,解得:-2≤x≤10,
故p:-2≤x≤10;
由$\frac{{x-({m+1})}}{{x+({m-1})}}$≤0,m>0,解得:1-m<x≤1+m,
故q:1-m<x≤1+m,
若¬p是¬q的必要而不充分条件,
即q是p的必要不充分条件,
即[-2,10]?(1-m,1+m],
故$\left\{\begin{array}{l}{1-m<-2}\\{1+m≥10}\end{array}\right.$,解得:m≥9,
故答案为:m∈[9,+∞).

点评 本题考查了充分必要条件,考查集合的包含关系以及解不等式问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知直线l1:2x+4y-1=0,直线l2经过点(1,-2),求满足下列条件的直线l2的方程:
(1)l1∥l2;             (2)l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC,若存在△A1B1C1,满足$\frac{cosA}{{sin{A_1}}}=\frac{cosB}{{sin{B_1}}}=\frac{cosC}{{sin{C_1}}}=1$,则称△A1B1C1是△ABC的一个“友好”三角形.在满足下述条件的三角形中,存在“友好”三角形的是②:(请写出符合要求的条件的序号)
①A=90°,B=60°,C=30°;②A=75°,B=60°,C=45°; ③A=75°,B=75°,C=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系中,有△ABC,且A(-3,0),B(3,0),顶点C到点A与点B的距离之差为4,则顶点C的轨迹方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1(x≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在下列结论中,正确结论的序号为①②④.
①函数y=sin(kπ-x)(k∈Z)为奇函数;
②若tan(π-x)=2,则${cos^2}x=\frac{1}{5}$;
③函数$y=tan({2x+\frac{π}{6}})$的图象关于点$({\frac{π}{12},0})$对称;
④函数$y=cos({2x+\frac{π}{3}})$的图象的一条对称轴为$x=-\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥S-ABCD中,底面ABCD为平行四边形,∠DBA=60°,∠SAD=30°,AD=SD=2$\sqrt{3}$,BA=BS=4.
(Ⅰ)证明:BD⊥平面SAD;
(Ⅱ)求二面角A-SB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果实数$\left\{\begin{array}{l}{2x-y-6≤0}\\{x+y-3≥0}\\{y≤3}\end{array}\right.$,满足不等式组b=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$|sinx|dx,则目标函数z=x+by的最大值是(  )
A.3B.$\frac{21}{2}$C.6D.与b值有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.半径分别为5,6的两个圆相交于A,B两点,AB=8,且两个圆所在平面相互垂直,则它们的圆心距为$\sqrt{29}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知“a∈R,则“a=2”是“复数z=(a2-a-2)+(a+1)i(i为虚数单位)为纯虚数”的充要条件.

查看答案和解析>>

同步练习册答案