【题目】已知函数f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差数列.
(1)求f(30)的值.
(2)若a、b、c是两两不相等的正数,且a、b、c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.
【答案】
(1)
【解答】解:由f(0)、f(2)、f(6)成等差数列,得
2log2(2+m)=log2m+log2(6+m),
即(m+2)2=m(m+6)(m>0).
∴m=2,
∴f(30)=log2(30+2)=5.
(2)
【解答】
证明:f(a)+f(c)>2f(b).
证明如下:
2f(b)=2log2(b+2)=log2(b+2)2,
f(a)+f(c)=log2[(a+2)(c+2)],
又b2=ac,
∴(a+2)(c+2)-(b+2)2=ac+2(a+c)+4-b2-4b-4=2(a+c)-4b.
∵ (a≠c),
∴2(a+c)-4b>0,
∴log2[(a+2)(c+2)]>log2(b+2)2,
即f(a)+f(c)>2f(b).
【解析】本题主要考查了比较法证明不等式,解决问题的关键是(1)根据等差数列性质求得m,然后计算即可;(2)首项求得2f(b)=2log2(b+2)=log2(b+2)2 , f(a)+f(c)=log2[(a+2)(c+2)],如何根据所给条件结合不等式性质作差比较大小即可.
科目:高中数学 来源: 题型:
【题目】已知点(x0 , y0)在x2+y2=r2(r>0)外,则直线x0x+y0y=r2与圆x2+y2=r2的位置关系为( )
A.相交
B.相切
C.相离
D.相交、相切、相离三种情况均有可能
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:kx﹣y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线l不经过第四象限,求k的取值范围;
(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点p(x,y)是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2﹣2y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)(x∈R)的图象如图所示,f′(x)是f(x)的导函数,则不等式(x﹣1)f′(x)<0的解集为( )
A.(﹣∞, )∪(1,2)
B.(﹣1,1)∪(1,3)
C.(﹣1, )∪(3,+∞)
D.(﹣∞,﹣1)∪(3,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一(2)班共有60名同学参加期末考试,现将其数学学科成绩(均为整数)分成六个分数段[40,50),[50,60),…,[90,100],画出如图所示的部分频率分布直方图,请观察图形信息,回答下列问题:
(1)求a并估计这次考试中该学科的中位数、平均值;
(2)现根据本次考试分数分成下列六段(从低分段到高分段依次为第一组、第二组…第六组)为提高本班数学整体成绩,决定组与组之间进行帮扶学习.若选出的两组分数之差不小于30分(以分数段为依据,不以具体学生分数为依据,如:[40,50),[70,80)这两组分数之差为30分),则称这两组为“最佳组合”,试求选出的两组为“最佳组合”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com