精英家教网 > 高中数学 > 题目详情
7.求y=2x+1+2$\sqrt{-{x}^{2}+2x+3}$的值域.

分析 先求函数的定义域,然后求函数的导数,利用导数研究是的单调性和极值,利用函数极值和值域之间的关系机进行求解即可.

解答 解:由-x2+2x+3≥0得x2-2x-3≤0得-1≤x≤3,
则函数的导数f′(x)=2+2×$\frac{1}{2}•$$\frac{-2x+2}{\sqrt{-{x}^{2}+2x+3}}$=2+$\frac{-2x+2}{\sqrt{-{x}^{2}+2x+3}}$,
由f′(x)=0得2+$\frac{-2x+2}{\sqrt{-{x}^{2}+2x+3}}$=0,即x-1=$\sqrt{-{x}^{2}+2x+3}$,
平方得x2-2x+1=-x2+2x+3,
即x2-2x-1=0,解得x=1+$\sqrt{2}$,
即当-1≤x<1+$\sqrt{2}$时,f′(x)>0,函数递增,
当1+$\sqrt{2}$<x≤3时,f′(x)<0,函数递减,
即当x=1+$\sqrt{2}$时,函数取得极大值,同时也是最大值,此时f(1+$\sqrt{2}$)=3+4$\sqrt{2}$,
∵f(-1)=-2+1=-1,f(3)=6+1=7,
∴函数的最小值为-1,
故函数的值域为[-1,3+4$\sqrt{2}$].

点评 本题主要考查函数的值域的求解,求函数的导数,判断函数的极值和单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知定义在R上的函数f(x)满足①图象关于(1,0)点对称;②f(-1+x)=f(-1-x);③x∈[-1,1]时,f(x)=$\left\{\begin{array}{l}{1{-x}^{2},x∈[-1,0]}\\{cos\frac{π}{2}x,x∈(0,1]}\end{array}\right.$,则函数y=f(x)-($\frac{1}{2}$)|x|在区间[-3,3]上的零点个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则:从A1,A2,A3,A4,A5,A6(如图所示)这6个点中任取两点,记选取y轴上的点(A3,A4)的个数为X,若X=0就参加学校合唱团,否则就参加排球队.
(1)记“从从A1,A2,A3,A4,A5,A6中任取两点”为事件N,请列举事件N的所有可能情况;
(2)求小波不参加学校合唱团的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.正方体ABCD-A1B1C1D1的棱长为a,M、N、P、Q分别在棱A1D1、A1B1、B1C1、BC上移动,则四面体MNPQ的最大体积是$\frac{1}{6}$a3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在1与9之间插入n-1个数b1,b2,…bn-1使这n+1个数成等差数列,记为An+1则数列{An+1}通项公式为An=9-$\frac{8}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.两平行直线l1,l2分别过A(1,0),B(0,5).若l1与l2的距离为5,则l1与l2的方程分别为l1:y=0,l2:y=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若f(x)=$\frac{1}{2x+1}$,则f(-3)=(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.$\frac{1}{7}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A,B,C三点不共线,A,B,D三点共线,$\overrightarrow{CD}$=t$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,则△CDB面积和△CDA的面积之比为1:1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若关于x的方程x2+4xsinθ+atanθ=0($\frac{π}{12}$<θ<$\frac{π}{3}$)有两个相等的实数根.
(1)求实数a的取值范围.
(2)当a=$\frac{7}{4}$时,求sin($\frac{π}{4}$+θ)的值.

查看答案和解析>>

同步练习册答案