精英家教网 > 高中数学 > 题目详情

【题目】已知动圆P恒过定点,且与直线相切.

(Ⅰ)求动圆P圆心的轨迹M的方程;

(Ⅱ)正方形ABCD中,一条边AB在直线y=x+4上,另外两点C、D在轨迹M上,求正方形的面积.

【答案】(1) ;(2)

【解析】

1)根据题意及抛物线的定义可得轨迹的方程为;(2)设边所在直线方程为,代入抛物线方程后得到关于的二次方程,进而由根与系数的关系可得,又由两平行线间的距离公式可得,由求出,于是可得正方形的边长,进而可得其面积.

(1)由题意得动圆的圆心到点的距离与它到直线的距离相等,

所以圆心的轨迹是以为焦点,以为准线的抛物线,且

所以圆心的轨迹方程为

(2)由题意设边所在直线方程为

消去整理得

∵直线和抛物线交于两点,

,解得

.

又直线与直线间的距离为

,解得

经检验都满足

∴正方形边长

∴正方形的面积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知五面体中,四边形为矩形,,且二面角的大小为.

(1)证明:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内心,三边长,点在边上,且,若直线交直线于点,则线段的长为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面为矩形的四棱锥底面的中点.

1)求四棱锥的体积;

2)求与面所成角;

3)在边上是否存在一点,使得到平面的距离为?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为)作为样本(样本容量为)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,已知得分在[50,60),[90,100]频数分别为8,2.

(1)求样本容量和频率分布直方图中的的值;

(2)估计本次竞赛学生成绩的中位数;

(3)在选取的样本中,从竞赛成绩在分以上(含分)的学生中随机抽取名学生,求所抽取的名学生中至少有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等腰三角形△ABC的两腰ABAC所在直线的方程分别为是底边BC上一点,求:

(1)底边BC所在直线的方程;

(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是关于的方程的两个不相等的实数根,那么过两点的直线与圆的位置关系是(

A.相离B.相切C.相交D.随的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点与双曲线有且只有一个公共点的直线共__________条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为正方形,.

(1)证明:平面平面.

(2)若平面,二面角,三棱锥的外接球的球心为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案