精英家教网 > 高中数学 > 题目详情

【题目】长方体ABCD﹣A1B1C1D1中AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为( )

A.
B.
C.
D.

【答案】B
【解析】解析:建立坐标系如图.则A(1,0,0),E(0,2,1),B(1,2,0),C1(0,2,2).
=(﹣1,0,2),A=(﹣1,2,1),
cos< >═
所以异面直线BC1与AE所成角的余弦值为
故选B

【考点精析】掌握异面直线及其所成的角是解答本题的根本,需要知道异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】生产甲乙两种精密电子产品,用以下两种方案分别生产出甲乙产品共种,现对这两种方案生产的产品分别随机调查了各次,得到如下统计表:

①生产件甲产品和件乙产品

正次品

甲正品

甲正品

乙正品

甲正品

甲正品

乙次品

甲正品

甲次品

乙正品

甲正品

甲次品

乙次品

甲次品

甲次品

乙正品

甲次品

甲次品

乙次品

频 数

②生产件甲产品和件乙产品

正次品

乙正品

乙正品

甲正品

乙正品

乙正品

甲次品

乙正品

乙次品

甲正品

乙正品

乙次品

甲次品

乙次品

乙次品

甲正品

乙次品

乙次品

甲次品

频 数

已知生产电子产品甲件,若为正品可盈利元,若为次品则亏损元;生产电子产品乙件,若为正品可盈利元,若为次品则亏损元.

(I)按方案①生产件甲产品和件乙产品,求这件产品平均利润的估计值;

(II)从方案①②中选其一,生产甲乙产品共件,欲使件产品所得总利润大于元的机会多,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且f(﹣3)=0,当x>0时,有f(x)﹣xf′(x)>0成立,则不等式f(x)>0的解集是(
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(0,3)
D.(﹣3,0)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,已知向量 =(﹣1,2),又点A(8,0),B(n,t),C(ksinθ,t).
(1)若 ,且| |= | |,求向量
(2)若向量 与向量 共线,常数k>0,求f(θ)=tsinθ的值域;
(3)当(2)问中f(θ)的最大值4时,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆经过椭圆的焦点.

1)求椭圆的标准方程;

2)设直线交椭圆两点,为弦的中点,,记直线的斜率分别为,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,在以极点为直角坐标原点,极轴为轴的正半轴建立的平面直角坐标系中,直线的参数方程为为参数).

(1)写出直线的普通方程与曲线的直角坐标方程;

(2)在平面直角坐标系中,设曲线经过伸缩变换 得到曲线,若为曲线上任意一点,求点到直线的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,点D是BC的中点.

(1)求证:A1B∥平面ADC1
(2)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1与ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x﹣a|
(1)当a=2时,解不等式f(x)≥4.
(2)若不等式f(x)≥2a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,EAB的中点.

(Ⅰ)求证:AN∥平面MEC;

(Ⅱ)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为 ?若存在,求出AP的长h;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案