精英家教网 > 高中数学 > 题目详情
6.已知:x∈R,a=x2-1,b=4x+5.求证:a,b中至少有一个不小于0.

分析 假设 a<0,b<0,则a+b<0,又a+b=x2-1+4x+5=x2+4x+4=(x+2)2≥0,这与假设所得结论矛盾,故假设不成立.

解答 证明:假设a,b都小于0,即a<0,b<0,则a+b<0.
又a+b=x2-1+4x+5=x2+4x+4=(x+2)2≥0,
这与假设所得a+b<0矛盾,故假设不成立.
∴a,b中至少有一个不小于0.

点评 本题考查用反证法证明数学命题,推出矛盾是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知直线l1:x+2y-5=0,l2:2x+y+2=0,则直线l1与直线l2及x轴所围成的三角形的面积是(  )
A.12B.18C.24D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设离散型随机变量X的概率分布如表:则随机变量X的数学期望为(  )
X0123
Pi$\frac{1}{6}$$\frac{1}{3}$$\frac{1}{6}$p
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{7}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.三棱锥P-ABC的三条侧棱PA,PB,PC两两垂直,三个侧面的面积分别为1、2和4,则三棱锥P-ABC的体积为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取1000人进行了一次生活习惯是否符合低碳观念的调查,从年龄段[40,55]的人群中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,则选取的2名领队中至少有1人年龄在[40,45)岁的概率为$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数y=f(x)是R上的奇函数,且x>0时,f(x)=lg(x),若g(x)=sinπx,则函数y=f(x-2)与y=g(x)图象所有公共点的横坐标之和为(  )
A.10B.12C.20D.22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若三条直线ax+2y+8=0,4x+3y-10=0和2x-y=0相交于一点,则实数a的值为-12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式$\frac{{x}^{2}+2x+2}{x+2}$>1的解集是(  )
A.(-2,-1)∪(0,∞)B.(-∞,-1)∪(0,+∞)C.(0,+∞)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如下表:
年     份2008200920102011201220132014
年份代号t1234567
人均纯收入y2.73.63.34.65.45.76.2
对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)预测该地区2016年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\hat b=\frac{{\sum_{i=1}^n{({t_i}-\bar\overline{t})({y_i}-\bar\overline{y})}}}{{\sum_{i=1}^n{{{({t_i}-\bar\overline{t})}^2}}}}$,$\hat a=\bar\overline{y}-\hat b\bar\overline{t}$.

查看答案和解析>>

同步练习册答案