【题目】如图,在梯形中,,,,,四边形是菱形,.
(Ⅰ)求证:;
(Ⅱ)求二面角的平面角的正切值.
【答案】(Ⅰ)证明见解析;(Ⅱ).
【解析】试题分析:
(Ⅰ)由勾股定理可得,结合面面垂直的性质有.由菱形的性质可得,则平面,.
(Ⅱ)取的中点,连接,以、、分别为、、轴建立空间直角坐标系,据此计算可得平面的法向量,平面的法向量.
则二面角的平面角的余弦值,正切值为.
试题解析:
(Ⅰ)依题意,在等腰梯形中,,,
∵,∴即,
∵,∴,而,∴.
连接,∵四边形是菱形,∴,
∴,∵,∴.
(Ⅱ)取的中点,连接,因为四边形是菱形,且.
所以由平面几何易知,∵,∴.
故此可以、、分别为、、轴建立空间直角坐标系,各点的坐标依次为:,,,,,.
设平面和平面的法向量分别为,,
∵,.
∴由 ,令,则,
同理,求得.
∴,故二面角的平面角的正切值为.
科目:高中数学 来源: 题型:
【题目】已知某盒子中共有个小球,编号为号至号,其中有个红球、个黄球和个绿球,这些球除颜色和编号外完全相同.
(1)若从盒中一次随机取出个球,求取出的个球中恰有个颜色相同的概率;
(2)若从盒中逐一取球,每次取后立即放回,共取次,求恰有次取到黄球的概率;
(3)若从盒中逐一取球,每次取后不放回,记取完黄球所需次数为,求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某运输公司接受了向抗洪救灾地区每天送至少支援物资的任务.该公司有辆载重的型卡车与辆载重为的型卡车,有名驾驶员,每辆卡车每天往返的次数为型卡车次,型卡车次;每辆卡车每天往返的成本费型为元,型为元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低?若只安排型或型卡车,所花的成本费分别是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,直线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,曲线的参数方程为(为参数).
(1)求直线的直角坐标方程和曲线的普通方程;
(2)若曲线为曲线关于直线的对称曲线,点,分别为曲线、曲线上的动点,点坐标为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为,离心率为,圆,是椭圆的左右顶点,是圆的任意一条直径,面积的最大值为2.
(1)求椭圆及圆的方程;
(2)若为圆的任意一条切线,与椭圆交于两点,求的取直范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线C的参数方程为为参数.在以原点为极点,为参数).在以原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.
(Ⅰ)求曲线C的普通方程和直线的直角坐标方程;
(Ⅱ)设,直线与曲线C交于M,N两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以,,,,,分组的频率分布直方图如图所示.
根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;
用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布
估计该市居民月平均用电量介于度之间的概率;
利用的结论,从该市所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com