16£®PM2.5ÊÇÖ¸»·¾³¿ÕÆøÖпÕÆø¶¯Á¦Ñ§µ±Á¿Ö±¾¶Ð¡ÓÚ»òµÈÓÚ2.5 Î¢Ã׵ĿÅÁ£Îһ°ãÇé¿öÏÂPM2.5Ũ¶ÈÔ½¸ß£¬¾Í´ú±í¿ÕÆøÎÛȾԽÑÏÖØ£¬ÈçͼËùʾµÄ¾¥Ò¶Í¼±íʾµÄÊÇijÊÐÇø¼×¡¢ÒÒÁ½¸ö¼à²âվij10ÈÕÄÚÿÌìµÄPM2.5Ũ¶È¶ÁÊý£¨µ¥Î»£º¦Ìg/m3£©£¬ÔòÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Õâ10 ÈÕÄڼס¢ÒÒ¼à²âÕ¾¶ÁÊýµÄ¼«²îÏàµÈ
B£®Õâ10 ÈÕÄڼס¢ÒÒ¼à²âÕ¾¶ÁÊýµÄÖÐλÊýÖУ¬ÒҵĽϴó
C£®Õâ10 ÈÕÄÚÒÒ¼à²âÕ¾¶ÁÊýµÄÖÚÊýÓëÖÐλÊýÏàµÈ
D£®Õâ10 ÈÕÄڼס¢ÒÒ¼à²âÕ¾¶ÁÊýµÄƽ¾ùÊýÏàµÈ

·ÖÎö ¸ù¾Ý¾¥Ò¶Í¼ÖеÄÊý¾Ý·Ö²¼£¬·Ö±ðÇó³ö¼×Òҵļ«²î£¬ÖÐλÊý£¬ÖÚÊý£¬Æ½¾ùÊý±È½Ï¼´¿É£®

½â´ð ½â£º¸ù¾Ý¾¥Ò¶Í¼ÖеÄÊý¾Ý¿ÉÖª£¬
Õâl0ÈÕÄڼס¢¼«²îΪ55£¬ÖÐλÊýΪ74£¬Æ½¾ùÊýΪ73.4£¬
Õâl0ÈÕÄÚÒÒ¡¢¼«²îΪ57£¬ÖÐλÊýΪ68£¬ÖÚÊýΪ68£¬Æ½¾ùÊýΪ68.1£¬
ͨ¹ýÒÔÉϵÄÊý¾Ý·ÖÎö£¬¿ÉÖªCÕýÈ·£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²é¾¥Ò¶Í¼µÄʶ±ðºÍÅжϣ¬¸ù¾Ý¾¥Ò¶Í¼ÖÐÊý¾Ý·Ö²¼Çé¿ö£¬¼´¿ÉÈ·¶¨¼«²î£¬ÖÐλÊý£¬ÖÚÊý£¬Æ½¾ùÊý´óС£¬±È½Ï»ù´¡£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ä³ÆóÒµÄâÔÚ2011Äê¶È½øÐÐһϵÁдÙÏú»î¶¯£¬ÒÑÖªÆä²úÆ·ÄêÏúÁ¿xÍò¼þÓëÄê´ÙÏú·ÑÓÃtÍòÔªÖ®¼äÂú×ã3-xÓët+1³É·´±ÈÀý£¬µ±Äê´ÙÏú·ÑÓÃt=0ÍòԪʱ£¬ÄêÏúÁ¿ÊÇ1Íò¼þ£®ÒÑÖª2011Äê²úÆ·µÄÉ豸Õ۾ɡ¢Î¬Ð޵ȹ̶¨·ÑÓÃΪ3ÍòÔª£¬Ã¿Éú²ú1Íò¼þ²úÆ·ÐèÔÙͶÈë32ÍòÔªµÄÉú²ú·ÑÓã¬Èô½«Ã¿¼þ²úÆ·ÊÛ¼Û¶¨Îª£ºÆäÉú²ú³É±¾µÄ150%Ó롰ƽ¾ùÿ¼þ´ÙÏú·ÑµÄÒ»°ë¡±Ö®ºÍ£¬Ôòµ±ÄêÉú²úµÄÉÌÆ·ÕýºÃÄÜÏúÍ꣮
£¨1£©½«2011ÄêµÄÀûÈóy£¨ÍòÔª£©±íʾΪ´ÙÏú·Ñt£¨ÍòÔª£©µÄº¯Êý£»
£¨2£©¸ÃÆóÒµ2011ÄêµÄ´ÙÏú·ÑͶÈë¶àÉÙÍòԪʱ£¬ÆóÒµÄêÀûÈó×î´ó£¿
£¨×¢£ºÀûÈó=ÏúÊÛÊÕÈë-Éú²ú³É±¾-´ÙÏú·Ñ£¬Éú²ú³É±¾=¹Ì¶¨·ÑÓÃ+Éú²ú·ÑÓã©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®6ÈËÕ¾³ÉÒ»ÅÅ£¬¼×¡¢ÒÒÁ½¸öÈ˲»ÏàÁÚµÄÅÅ·¨ÖÖÊýΪ£¨¡¡¡¡£©
A£®120B£®240C£®360D£®480

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚÖ±½ÇƽÃæ×ø±êϵÖУ¬¶þ´Îº¯Êýf£¨x£©¹ý¶¨µã£¨-1£¬3£©£¬¶¥µã×ø±êΪ£¨0£¬2£©£»Õý±ÈÀýº¯Êýg£¨x£©µÄͼÏóǡΪһ¡¢ÈýÏóÏ޵ĽÇƽ·ÖÏߣ®Èôº¯ÊýF£¨x£©=af£¨x£©-g£¨x£©£¬ÆäÖÐaΪ³£ÊµÊý£®
£¨1£©Çóº¯ÊýF£¨x£©£»
£¨2£©Èôa£¾0£¬ÉèF£¨x£©ÔÚÇø¼ä[1£¬2]ÉϵÄ×îСֵΪG£¨a£©£¬ÇóG£¨a£©µÄ±í´ïʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôG£¨a£©£¾m2-2tm-5¶ÔËùÓеÄa¡Ê£¨0£¬+¡Þ£©£¬t¡Ê[-1£¬1]ºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èôx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-1¡Ý0}\\{x-y¡Ü0}\\{x+y-4¡Ü0}\end{array}\right.$£¬Ôò$\frac{x}{y}$µÄ×îСֵΪ$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{x+1£¬x¡Ü0}\\{{x}^{2}-2x+1£¬x£¾0}\end{array}\right.$£¬Èô¹ØÓÚxµÄ·½³Ìf2£¨x£©-af£¨x£©=0Ç¡ÓÐ5¸ö²»Í¬µÄʵÊý½â£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ£¨0£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÃüÌâp£º?x¡ÊR£¬2x£¾x2µÄ·ñ¶¨ÊÇ?x¡ÊR£¬2x¡Üx2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èôº¯Êýf£¨x£©Âú×㣺x3f¡ä£¨x£©+3x2f£¨x£©=ex£¬f£¨1£©=e£¬ÆäÖÐf¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬Ôò£¨¡¡¡¡£©
A£®f£¨1£©£¼f£¨3£©£¼f£¨5£©B£®f£¨1£©£¼f£¨5£©£¼f£¨3£©C£®f£¨3£©£¼f£¨1£©£¼f£¨5£©D£®f£¨3£©£¼f£¨5£©£¼f£¨1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¹ØÓÚxµÄ·½³Ìx2+2£¨m+3£©x+2m+14=0ÓÐÁ½Êµ¸ùÔÚ[0£¬4£©ÄÚ£¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸