精英家教网 > 高中数学 > 题目详情
14.设函数$f(x)=sin(2x+\frac{π}{3})+\sqrt{3}-2\sqrt{3}{cos^2}$x.
(1)求f(x)的最小正周期及其图象的对称中心;
(2)求函数f(x)的单调递增区间.

分析 (1)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性以及它的图象的对称性,求得f(x)的最小正周期及其图象的对称中心.
(2)利用正弦函数的单调性,求得函数f(x)的单调递增区间.

解答 解:(1)$f(x)=\frac{1}{2}sin2x+\frac{{\sqrt{3}}}{2}cos2x-\sqrt{3}cos2x$=$\frac{1}{2}sin2x-\frac{{\sqrt{3}}}{2}cos2x$=$sin({2x-\frac{π}{3}})$,
所以f(x)的最小正周期为$T=\frac{2π}{2}=π$.
令$2x-\frac{π}{3}=kπ({k∈Z})$,求得x=$\frac{kπ}{2}$+$\frac{π}{6}$,可得函数的图象对称中心为$({\frac{kπ}{2}+\frac{π}{6},0})({k∈Z})$.
(2)令$2kπ-\frac{π}{2}≤2x-\frac{π}{3}≤2kπ+\frac{π}{2}({k∈Z})$,解得$kπ-\frac{π}{12}≤x≤kπ+\frac{5π}{12}({k∈Z})$,
所以f(x)的单调递增区间为$[{kπ-\frac{π}{12},kπ+\frac{5π}{12}}]({k∈Z})$.

点评 本题主要考查三角恒等变换,正弦函数的周期性和单调性,以及它的图象的对称性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.某几何体上的三视图如图所示,则该几何体的体积是$\frac{4+π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中,已知点M(1,0),P(x,y)为平面上一动点,P到直线x=2的距离为d,$\frac{|PM|}{d}$=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)不过原点O的直线l与C相交于A,B两点,线段AB的中点为D,直线OD与直线x=2交点的纵坐标为1,求△OAB面积的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知平面上动点M到直线y=-2的距离比它到点F(0,1)的距离多1.
(Ⅰ)求动点M的轨迹方程;
(Ⅱ)设动点M形成的曲线为E,过点P(0,-1)的直线l交曲线E于A,B两点,若直线OA和直线OB的斜率之和为2(其中O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在正棱柱ABC-A1B1C1中,D是AC的中点,AA1:AB=$\sqrt{2}$:1,则异面直线AB1与BD所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.sin$\frac{2017π}{3}$的值等于(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$-\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.记△ABC的三个内角分别为A,B,C,设$\overrightarrow{AB}$与$\overrightarrow{BC}$的夹角为θ,已知$\overrightarrow{AB}$$•\overrightarrow{BC}$=6,且6(2-$\sqrt{3}$)≤|$\overrightarrow{AB}$||$\overrightarrow{BC}$|sin(π-θ)≤6$\sqrt{3}$.
(Ⅰ)求tan15°的值和角θ的取值范围;
(Ⅱ)求函数f(θ)=$\frac{1-\sqrt{2}cos(2θ-\frac{π}{4})}{sinθ}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知{an},{bn}为两个数列,其中{an}是等差数列且前n项和为Sn又a3=6,a9=18.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足a1b1+a2b2+…+anbn=(2n-3)Sn,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥S-ABCD中,底面ABCD为平行四边形,E是SA的上一点,当点E满足条件SE=EA,时,SC∥平面EBD,写出条件并加以证明.

查看答案和解析>>

同步练习册答案