精英家教网 > 高中数学 > 题目详情
已知向量a=(mn),b=(pq),定义a?bmnpq.给出下列四个结论:①a?a=0;②a?bb?a;③(ab)?aa?ab?a;④(a?b)2+(a·b)2=(m2q2)·(n2p2).
其中正确的结论是________.(写出所有正确结论的序号)
①④
对于①,a?amnmn=0,所以①正确;对于②,a?bmnpqb?apqmn,故②不一定正确;对于③,(ab)?a=(mp)(nq)-mna?ab?a=0+pqmn,所以③不一定正确;对于④,(a?b)2+(a·b)2=(mnpq)2+(mpnq)2=(m2q2)·(n2p2),故④正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形ABCP中,,D是AP的中点,E,G分别为PC,CB的中点,将三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中点,求证:AP平面EFG;(2)当二面角G-EF-D的大小为时,求FG与平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(1)求证:DC⊥平面ABC;
(2)求BF与平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.

求证:(1)CM∥平面PAD.
(2)平面PAB⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥中,底面为菱形,平面分别是的中点.

(1)证明:平面
(2)取,若上的动点,与平面所成最大角的正切值为,求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知空间四边形OABC,点M、N分别是OA、BC的中点,且a,b,c,用abc表示向量=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

向量=(2,4,x),=(2,y,2),若||=6,且,则x+y的值为( )
A.-3B.1C.-3或1D.3或1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角等于   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系中,以点A(4,1,9),B(10,-1,6),C(x,4,3)为顶点的△ABC是以BC为斜边的等腰直角三角形,则实数x的值为    .

查看答案和解析>>

同步练习册答案