【题目】某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量(单位:亿元)对年销售额(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①,②,其中均为常数,为自然对数的底数.
现该公司收集了近12年的年研发资金投入量和年销售额的数据,,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令,经计算得如下数据:
(1)设和的相关系数为,和的相关系数为,请从相关系数的角度,选择一个拟合程度更好的模型;
(2)(i)根据(1的选择及表中数据,建立关于的回归方程(系数精确到0.01);
(ii)若下一年销售额需达到90亿元,预测下一年的研发资金投入量是多少亿元?
附:①相关系数,回归直线中斜率和截距的最小二乘估计公式分别为:,;
② 参考数据:,,.
【答案】(1)模型的拟合程度更好;(2)(i);(ii)亿元.
【解析】
(1)由相关系数求出两个系数,比较大小可得;
(2)(i)先建立关于的线性回归方程,从而得出关于的回归方程;
(ii)把代入(i)中的回归方程可得值.
本小题主要考查回归分析等基础知识,考查数据处理能力、运算求解能力、抽象概括能力及应用意识,考查统计与概率思想、分类与整合思想,考查数学抽象、数学运算、数学建模、数据分析等核心素养,体现基础性、综合性与应用性.
解:(1),
,
则,因此从相关系数的角度,模型的拟合程度更好
(2)(i)先建立关于的线性回归方程.
由,得,即.
由于,
所以关于的线性回归方程为,
所以,则
(ii)下一年销售额需达到90亿元,即,
代入得,,
又,所以,
所以,
所以预测下一年的研发资金投入量约是亿元
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,,底面为直角梯形,,,,为线段上一点.
(I)若,求证:平面;
(II)若,,异面直线与成角,二面角的余弦值为,求的长及直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】质检部门为了解某企业生产的一-种圆柱形零件的质量情况,随机抽检了100个零件,得到这些零件的横截面直径d(单位:)的频率分布表如下:
d的分组 | |||||
零件数 | 12 | 38 | 38 | 10 | 2 |
(1)试估计这个企业生产的这类零件的横截面直径不低于的概率;
(2)求这个企业生产的这类零件的横截面直径的平均数与标准差的估计值(同一组中的数据用该区间的中点值为代表).(精确到0.01)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )
A.华为的全年销量最大B.苹果第二季度的销量大于第三季度的销量
C.华为销量最大的是第四季度D.三星销量最小的是第四季度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆的离心率为且右焦点到右准线的距离为.
(1)求椭圆的标准方程:
(2)过点的直线与椭圆交于两点,与交于点是弦的中点,直线与交于点.若与的面积之比是,求的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com