精英家教网 > 高中数学 > 题目详情

【题目】已知奇函数f(x)在(﹣∞,0)上单调递减,且f(2)=0,则不等式(x﹣1)f(x﹣1)>0的解集是(
A.(﹣3,﹣1)
B.(﹣1,1)∪(1,3)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,1)∪(2,+∞)

【答案】B
【解析】解:∵奇函数f(x)在(﹣∞,0)上单调递减,且f(2)=0,
∴奇函数f(x)在(0,+∞)上单调递减,且f(﹣2)=0,
不等式(x﹣1)f(x﹣1)>0等价于x﹣1>0,f(x﹣1)>0或x﹣1<0,f(x﹣1)<0

∴1<x<3或﹣1<x<1
∴不等式(x﹣1)f(x﹣1)>0的解集是(﹣1,1)∪(1,3)
故选B.
先确定奇函数f(x)在(0,+∞)上单调递减,且f(﹣2)=0,再将不等式(x﹣1)f(x﹣1)>0等价于x﹣1>0,f(x﹣1)>0或x﹣1<0,f(x﹣1)<0,即可求得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax2﹣(2a+1)x+2lnx(a≥0)
(1)当a=0时,求f(x)的单调区间;
(2)求y=f(x)在区间(0,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为奇函数,当x≥0时,f(x)= .g(x)=
(1)求当x<0时,函数f(x)的解析式,并在给定直角坐标系内画出f(x)在区间[﹣5,5]上的图象;(不用列表描点)

(2)根据已知条件直接写出g(x)的解析式,并说明g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1+x),g(x)=loga(1﹣x),其中(a>0且a≠1),设h(x)=f(x)﹣g(x).
(1)求h(x)的定义域;
(2)判断h(x)的奇偶性,并说明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为( )(结果保留一位小数.参考数据:)( )

A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,若,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数,设其导函数为,当时,恒有,令,则满足的实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)对其定义域内的两个实数x1、x2 , 都满足不等式 ,则称函数f(x)在其定义域内具有性质M.给出下列函数:① ;②y=x2;③y=2x;④y=log2x.其中具有性质M的是(
A.①④
B.②③
C.③④
D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点(2,1)且关于轴对称.

(1)求抛物线的方程;

(2)已知圆过定点,圆心在抛物线上运动,且圆轴交于两点,设,求的最大值.

查看答案和解析>>

同步练习册答案