【题目】已知椭圆的长轴长为,焦距为2,抛物线的准线经过C的左焦点F.
(1)求C与M的方程;
(2)直线l经过C的上顶点且l与M交于P,Q两点,直线FP,FQ与M分别交于点D(异于点P),E(异于点Q),证明:直线DE的斜率为定值.
【答案】(1)C:,M:(2)证明见解析
【解析】
(1)由题意可得,的值,运用,求得,可得椭圆的方程,由的准线经过点,求得,即可得解的方程;
(2)设直线的方程为,联立直线与抛物线的方程,设,,运用韦达定理得之间的关系,再联立直线与抛物线的方程解得的坐标,同理可得出的坐标,代入两点间斜率计算公式即可得结果.
(1)由题意,得,,所以,,
所以,所以C的方程为,
所以,由于M的准线经过点F,
所以,所以,故M的方程为.
(2)证明:由题意知,l的斜率存在,故设直线l的方程为,
由,得.
设,,
则,即且,,.
又直线FP的方程为,
由,得,
所以,所以,从而D的坐标为.
同理可得E的坐标为,
所以为定值.
科目:高中数学 来源: 题型:
【题目】某学校有30位高级教师,其中60%人爱好体育锻炼,经体检调查,得到如下列联表.
身体好 | 身体一般 | 总计 | |
爱好体育锻炼 | 2 | ||
不爱好体育锻炼 | 4 | ||
总计 | 20 |
(1)根据以上信息完成列联表,并判断有多大把握认为“身体好与爱好体育锻炼有关系”?
(2)现从身体一般的教师中抽取3人,记3人中爱好体育锻炼的人数为,求的分布列及数学期望.
参考公式:,其中.
临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的准线与轴的交点为,过作直线交抛物线于两点.
(1)求线段中点的轨迹;
(2)若线段的垂直平分线交对称轴于),求的取值范围;
(3)若直线的斜率依次取时,线段的垂直平分线与对称轴的交点依次为
,当时,
求: 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列说法:①设,,则“”是“”的充分不必要条件;②若,则,使得;③为等比数列,则“”是“”的充分不必要条件;④命题“,,使得”的否定形式是“,,使得” .其中正确说法的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,是椭圆上一点,轴,.
(1)求椭圆的标准方程;
(2)若直线与椭圆交于、两点,线段的中点为,为坐标原点,且,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,我国电子商务蓬勃发展.2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次.
(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对服务满意之间有关系”?
对服务满意 | 对服务不满意 | 合计 | |
对商品满意 | 80 | ||
对商品不满意 | 10 | ||
合计 | 200 |
(2)若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量,求的分布列和数学期望.
临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.897 | 10.828 |
的观测值:(其中).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】,是两个平面,m,n是两条直线,有下列四个命题;
①如果,,,那么.
②如果,,那么.
③如果,,那么.
④如果,,那么m与所成的角和n与所成的角相等.
其中正确的命题的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个结论:
①若命题,,则;
②集合满足:,则符合条件的集合的个数为3;
③命题“若,则方程有实数根”的逆否命题为:“若方程没有实数根,则”;
④设复数满足,为虚数单位,复数在复平面内对应的点在第三象限;
其中正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市场调查发现,某种产品在投放市场的30天中,其销售价格(元)和时间(天)()的关系如图所示
(1)写出销售价格(元)和时间(天)的函数解析式;
(2)若日销售量(件)与时间(天)的函数关系是(,),求该商品的日销售金额(元)与时间(天)的函数解析式;
(3)问该产品投放市场第几天时,日销售金额最高?最高值为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com