【题目】已知f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若 R),求证: 对a∈R,且a≠0成立.
【答案】
(1)解:当x≤﹣1时,不等式f(x)≤x+2为:1﹣x﹣x﹣1≤x+2,解得x≥﹣ (舍);
当﹣1<x≤1时,不等式f(x)≤x+2为:1﹣x+x+1≤x+2,解得x≥0,∴0≤x≤1;
当x>1时,不等式f(x)≤x+2为:x﹣1+x+1≤x+2,解得x≤2,∴1<x≤2.
综上,f(x)≤x+2的解集为{x|0≤x≤2}
(2)解:∵g(x)=|x+ |+|x﹣ |≥|x+ ﹣x+ |=3,
而 ≤ ≤|1+ +2﹣ |=3,
∴ 对a∈R,且a≠0成立
【解析】(1)讨论x的范围,去掉绝对值符号解出;(2)利用绝对值不等式的性质转化得出.
【考点精析】认真审题,首先需要了解不等式的证明(不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等).
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C所对的边分别为a,b,c,下列四个命题中不正确的命题是( )
A.若,则△ABC一定是等边三角形
B.若,则△ABC一定是锐角三角形
C.若,则△ABC一定是等腰三角形
D.若,则△ABC一定是等腰三角形或直角三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司在迎新年晚会上举行抽奖活动,有甲,乙两个抽奖方案供员工选择. 方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为 ,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则所获得奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为 ,每次中奖均可获得奖金400元.
(Ⅰ)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;
(Ⅱ)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是 ( )
①相关系数用来衡量两个变量之间线性关系的强弱, 越接近于,相关性越弱;
②回归直线一定经过样本点的中心;
③随机误差满足,其方差的大小用来衡量预报的精确度;
④相关指数用来刻画回归的效果, 越小,说明模型的拟合效果越好.
A. ①② B. ③④ C. ①④ D. ②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某零售店近5个月的销售额和利润额资料如下表:
商店名称 | |||||
销售额/千万元 | 3 | 5 | 6 | 7 | 9 |
利润额/百万元 | 2 | 3 | 3 | 4 | 5 |
(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;
(2)用最小二乘法计算利润额关于销售额的回归直线方程;
(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).
[参考公式:,]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应国建“精准扶贫,产业扶贫”的战略,某市面向全国征召《扶贫政策》义务宣传志愿者,从年龄在[20,45]的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示
(1)求图中x的值
(2)在抽出的100名志愿者中按年龄采取分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人,记这3名志愿者中“年龄低于35岁”的人数为Y,求Y的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】min(a,b)表示a,b中的最小值,执行如图所示的程序框图,若输入的a,b值分别为4,10,则输出的min(a,b)值是( )
A.0
B.1
C.2
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】规定:投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀.根据以往经验某选手投掷一次命中8环以上的概率为 .现采用计算机做模拟实验来估计该选手获得优秀的概率:用计算机产生0到9之间的随机整数,用0,1表示该次投掷未在 8 环以上,用2,3,4,5,6,7,8,9表示该次投掷在 8 环以上,经随机模拟试验产生了如下 20 组随机数: 907 966 191 925 271 932 812 458 569 683
031 257 393 527 556 488 730 113 537 989
据此估计,该选手投掷 1 轮,可以拿到优秀的概率为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com