精英家教网 > 高中数学 > 题目详情

【题目】某市为了鼓励市民节约用水,实行“阶梯式”水价,将该市每户居民的月用水量划分为三档:月用水量不超过4吨的部分按2元/吨收费,超过4吨但不超过8吨的部分按4元/吨收费,超过8吨的部分按8元/吨收费.

(1)求居民月用水量费用(单位:元)关于月用电量(单位:吨)的函数解析式;

(2)为了了解居民的用水情况,通过抽样,获得今年3月份100户居民每户的用水量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年3月份用水费用不超过16元的占60%,求的值;

(3)若地区居民用水量平均值超过6吨,则说明该地区居民用水没有节约意识在满足(2)的条件下,请你估计市居民用水是否有节约意识(同一组中的数据用该组区间的中点值作代表).

【答案】(1) ;(2) ;(3) 市居民用水有节约意识.

【解析】试题分析:(1)三档分三段求解析式,注意对应关系,尤其区间端点开与闭,(2)先根据函数关系确定用水费用不超过16元对应用水量,再根据频率分布直方图小长方形面积等于对应区间概率,列关于的两个方程,解方程组得的值;(3)根据组中值与对应概率乘积的和计算居民用水量平均值为,再根据评价标准确定市居民用水有节约意识.

试题解析:(1)

(2)∵时, ,∴

(3)

市居民用水有节约意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且A,B,C成等差数列
(1)若b=2 ,c=2,求△ABC的面积;
(2)若a,b,c成等比数列,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

(Ⅰ)已知常数解关于的不等式

(Ⅱ)若函数的图象恒在函数图象的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了鼓励市民节约用水,实行“阶梯式”水价,将该市每户居民的月用水量划分为三档:月用水量不超过4吨的部分按2元/吨收费,超过4吨但不超过8吨的部分按4元/吨收费,超过8吨的部分按8元/吨收费.

(1)求居民月用水量费用(单位:元)关于月用电量(单位:吨)的函数解析式;

(2)为了了解居民的用水情况,通过抽样,获得今年3月份100户居民每户的用水量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年3月份用水费用不超过16元的占66%,求的值;

(3)在满足条件(2)的条件下,若以这100户居民用水量的频率代替该月全市居民用户用水量的概率.且同组中的数据用该组区间的中点值代替.记为该市居民用户3月份的用水费用,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的各项均为正数,且a1a100+a3a98=8,则log2a1+log2a2+…+log2a100=(
A.10
B.50
C.100
D.1000

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(理科)在平面直角坐标系中, 是椭圆上的一个动点,点,则的最大值为( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,若 处切线的斜率为

(1)求函数的解析式及其单调区间;

(2)若实数满足,且对于任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解2013年某校高三学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为,… ,经过数据处理,得到如右频率分布表:

(1)求频率分布表中未知量的值;

(2)从样本中视力在的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.

(1)求甲、乙两家公司共答对道题目的概率;

(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

同步练习册答案