精英家教网 > 高中数学 > 题目详情

【题目】已知底面为边长为2的正方形,侧棱长为1的直四棱柱ABCD﹣A1B1C1D1中,P是面A1B1C1D1上的动点.给出以下四个结论中,正确的个数是( ) ①与点D距离为 的点P形成一条曲线,则该曲线的长度是
②若DP∥面ACB1 , 则DP与面ACC1A1所成角的正切值取值范围是
③若 ,则DP在该四棱柱六个面上的正投影长度之和的最大值为
A.0
B.1
C.2
D.3

【答案】C
【解析】解:如图,①正确,与点D距离为 的点P形成以D1为圆心,半径为 圆弧MN,长度为 = ; ②错误,因为面A1DC1∥面ACB1 , 所以点P必须在面对角线A1C1上运动,当P在A1(或C1)时,DP与面ACC1A1所成角∠DA1O(或∠DC1O)的正切值为 最小,当P在O1时,DP与面ACC1A1所成角∠DO1O的正切值为 最大,所以正切值取值范围是
③正确,设P(x,y,1),则x2+y2+1=3,即x2+y2=2,DP在前后、左右、上下面上的正投影长分别为 ,所以六个面上的正投影长度之和为 ,当且仅当P在O1时取等号.
故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga|x+1|(a>0且a≠1),当x∈(0,1)时,恒有f(x)<0成立,则函数g(x)=loga(﹣ x2+ax)的单调递减区间是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个棱锥的三视图如图,则该棱锥的全面积(单位:cm2)为(
A.48+12
B.48+24
C.36+12
D.36+24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二次函数y=ax2+x+1(a>0)的图象与x轴两个交点的横坐标分别为x1 , x2
(1)证明:(1+x1)(1+x2)=1;
(2)证明:x1<﹣1,x2<﹣1;
(3)若x1 , x2满足不等式|lg |≤1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中值域为(0,+∞)的是( )
A.
B.y=x+ ({x>0})
C.y=
D.y=x﹣ (x≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 ,则下列结论错误的是( )
A.f(x)是偶函数
B.方程f(f(x))=x的解为x=1
C.f(x)是周期函数
D.方程f(f(x))=f(x)的解为x=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy内,动点P到定点F(﹣1,0)的距离与P到定直线x=﹣4的距离之比为
(1)求动点P的轨迹C的方程;
(2)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1 , 且直线OA、OB的斜率之积等于- ,问四边形ABA1B1的面积S是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设D是图中边长分别为1和2的矩形区域,E是D内位于函数y= (x>0)图象下方的区域(阴影部分),从D内随机取一个点M,则点M取自E内的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)= (x>0).
(1)求f(x)的最大值;
(2)证明:对任意实数a、b,恒有f(a)<b2﹣3b+

查看答案和解析>>

同步练习册答案