精英家教网 > 高中数学 > 题目详情

【题目】已知,记动点的轨迹为.

(1)求曲线的轨迹方程.

(2)若斜率为的直线与曲线交于不同的两点轴相交于点,则是否为定值?若为定值,则求出该定值;若不为定值,请说明理由.

【答案】(1);(2)答案见解析.

【解析】分析:(1)根据向量几何意义得点为线段的垂直平分线与直线的交点,即得 ,再根据椭圆定义得曲线的轨迹方程. (2),化简,再联立侄媳妇与椭圆方程,利用韦达定理代入化简即得定值.

详解:

(1)由可知,为线段的中点.由可知,点在直线上. 由可知,.所以点为线段的垂直平分线与直线的交点,所以,所以,所以动点的轨迹为以为焦点,长轴长为的椭圆,即,所以.所以曲线的轨迹方程为.

(2)设,则直线的方程为,将代入.

,所以.

.

所以

是定值3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过点作抛物线的两条切线,切点分别为,,,分别交轴于,两点,为坐标原点,则的面积之比为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列语句中正确的个数是( )

,函数都不是偶函数;

②命题“若,则”的否命题是真命题;

③若为真,则,非均为真;

④已知向量,则“”的充分不必要条件是“夹角为锐角”.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,四棱锥P -ABCD的底面是矩形,侧面PAD是正三角形,

且侧面PAD⊥底面ABCD,E 为侧棱PD的中点。

(1)求证:PB//平面EAC;

(2)求证:AE⊥平面PCD;

(3)当为何值时,PB⊥AC ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)为定义在R上的偶函数,且0≤x≤2时,yx;当x2时,yf(x)的图象是顶点为P(34)且过点A(22)的抛物线的一部分.

(1)求函数f(x)(,-2)上的解析式;

(2)写出函数f(x)的值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足fx)=f(2-x),且f(1)=6,f(3)=2.

(1)求fx)的解析式

(2)是否存在实数m,使得在[-1,3]上fx)的图象恒在直线y=2mx+1的上方?若存在,求m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查观众对某热播电视剧的喜爱程度,某电视台在甲、乙两地各随机抽取了名观众作问卷调查,得分统计结果如图所示.

(1)计算甲、乙两地被抽取的观众问卷的平均分与方差.

(2)若从甲地被抽取的名观众中再邀请名进行深入调研,求这名观众中恰有人的问卷调查成绩在分以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】旅游业作为一个第三产业,时间性和季节性非常强,每年11月份来临,全国各地就相继进入旅游淡季,很多旅游景区就变得门庭冷落.为改变这种局面,某旅游公司借助一自媒体平台做宣传推广,销售特惠旅游产品.该公司统计了活动刚推出一周内产品的销售数量,用表示活动推出的天数,用表示产品的销售数量(单位:百件),统计数据如下表所示.

根据以上数据,绘制了如图所示的散点图,根据已有的函数知识,发现样本点分布在某一条指数型函数的周围.为求出该回归方程,相关人员确定的研究方案是:先用其中5个数据建立关于的回归方程,再用剩下的2组数据进行检验.试回答下列问题:

(1)现令,若选取的是这5组数据,已知,请求出关于的线性回归方程(结果保留一位有效数字);

(2)若由回归方程得到的估计数据与选出的检验数据的误差均不超过,则认为得到的回归方程是可靠的,试问(1)中所得的回归方程是否可靠?

参考公式及数据:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点与椭圆的一个顶点重合,且这个顶点与椭圆的两个焦点构成的三角形面积为.

(1)求椭圆的方程;

(2)若椭圆的上顶点为,过作斜率为的直线交椭圆于另一点,线段的中点为为坐标原点,连接并延长交椭圆于点的面积为,求的值.

查看答案和解析>>

同步练习册答案