精英家教网 > 高中数学 > 题目详情
(2013•汕头二模)若?x∈R,使|x-a|+|x-1|≤4成立,则实数a的取值范围是
[-3,5]
[-3,5]
分析:利用绝对值的几何意义,转化不等式为|a-1|≤4,解之即可.
解答:解:在数轴上,|x-a|表示横坐标为x的点P到横坐标为a的点A距离,|x-1|就表示点P到横坐标为1的点B的距离,
∵(|PA|+|PB|)min=|a-1|,
∴要使得不等式|x-a|+|x-1|≤3成立,只要最小值|a-1|≤4就可以了,
即|a-1|≤4,
∴-3≤a≤5.
故实数a的取值范围是-3≤a≤5.
故答案为:[-3,5].
点评:本题考查绝对值不等式的解法,考查绝对值的几何意义,得到|a-1|≤4是关键,也是难点,考查分析问题、转化解决问题的能力,属于中档题.利用数轴帮助理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•汕头二模)已知i为虚数单位,若复数(1+ai)(2+i)是纯虚数,则实数a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)执行框图,若输出结果为
1
2
,则输入的实数x的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)数列{an}的首项为3,{bn}为等差数列,已知b1=2,b3=6,bn=an+l-an(n∈N*),则a6=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米,水位下降2米后水面宽
4
2
4
2
米.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)已知集合A={1,2},B={x∈Z|x2-5x+4<0},则A∩B=(  )

查看答案和解析>>

同步练习册答案