精英家教网 > 高中数学 > 题目详情
已知函数f(x)的定义域为[0,1]且同时满足:①对任意x∈[0,1]总有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)=f(x1)+f(x2)-2.
(I)求f(0)的值;
(II)求f(x)的最大值;
(III)设数列{an}的前n项和为Sn,且Sn=-
12
(an-3)(n∈N*)
,求f(a1)+f(a2)+…+f(an).
分析:(1)令x1=x2=0,代入f(x1+x2)=f(x1)+f(x2)-2,可求出f(0)的值.
(II)任取x1x2∈[0,1],且x1<x2,利用③证明f(x2)-f(x1))=f(x2-x1)-2≥0,即 f(x2)≥f(x1),得到f(x)≤f(1)=3.
(III)令n=1,得:a1=1,n≥2,时,由an=sn-sn-1求出通项公式,得到f(an)与f(an-1)的关系,构造一个等比数列,求出f(a1)+f(a2)+…+f(an)的值.
解答:解:(Ⅰ)令x1=x2=0,
由③知f(0)=2f(0)-2?f(0)=2;
(Ⅱ)任取x1x2∈[0,1],且x1<x2
则0<x2-x1≤1,∴f(x2-x1)≥2
∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1
=f(x2-x1)+f(x1)-2-f(x1)=f(x2-x1)-2≥0
∴f(x2)≥f(x1),则f(x)≤f(1)=3.
∴f(x)的最大值为3;
(Ⅲ)由Sn=-
1
2
(an-3)
知,
n=1时,a1=1;当n≥2时,an=-
1
2
an+
1
2
an-1

an=
1
3
an-1(n≥2),又a1=1,∴an=
1
3n-1

f(an)=f(
1
3n-1
)=f(
1
3n
+
1
3n
+
1
3n
)=f(
2
3n
)+f(
1
3n
)-2

=3f(
1
3n
)-4=3f(an+1)-4

f(an+1)=
1
3
f(an)+
4
3

f(an+1)-2=
1
3
(f(an)-2)

又f(a1)-2=1∴f(an)-2=(
1
3
)n-1,∴f(an)=(
1
3
)n-1+2

f(a1)+f(a2)++f(an)=2n+
3
2
-
1
3n-1
.
点评:本题考查抽象函数的性质及应用,前n项和与第n项的关系,构造法进行数列求和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的有(  )个.
①已知函数f(x)在(a,b)内可导,若f(x)在(a,b)内单调递增,则对任意的?x∈(a,b),有f′(x)>0.
②函数f(x)图象在点P处的切线存在,则函数f(x)在点P处的导数存在;反之若函数f(x)在点P处的导数存在,则函数f(x)图象在点P处的切线存在.
③因为3>2,所以3+i>2+i,其中i为虚数单位.
④定积分定义可以分为:分割、近似代替、求和、取极限四步,对求和In=
n
i=1
f(ξi)△x
中ξi的选取是任意的,且In仅于n有关.
⑤已知2i-3是方程2x2+px+q=0的一个根,则实数p,q的值分别是12,26.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知函数f(x)=x3-x,其图象记为曲线C.
(i)求函数f(x)的单调区间;
(ii)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积记为S1,S2.则
S1S2
为定值;
(Ⅱ)对于一般的三次函数g(x)=ax3+bx2+cx+d(a≠0),请给出类似于(Ⅰ)(ii)的正确命题,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案