精英家教网 > 高中数学 > 题目详情

椭圆的方程为上有一点P,它到椭圆的左准线的距离等于10,求点P到它的右焦点的距离。

答案:
解析:

解:∵a2=100,b2=6

c=

e==

依椭圆第二定义,设P点到椭圆左焦点的距离为x,则

x=6

∴点P到椭圆右焦点距离为2×10-6=14。


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列五个命题,其中真命题的序号是
 
(写出所有真命题的序号).
(1)已知C:
x2
2-m
+
y2
m2-4
=1
(m∈R),当m<-2时C表示椭圆.
(2)在椭圆
x2
45
+
y2
20
=1上有一点P,F1、F2是椭圆的左,右焦点,△F1PF2为直角三角形则这样的点P有8个.
(3)曲线
x2
10-m
+
y2
6-m
=1(m<6)
与曲线
x2
5-m
+
y2
9-m
=1(5<m<9)
的焦距相同.
(4)渐近线方程为y=±
b
a
x(a>0,b>0)
的双曲线的标准方程一定是
x2
a2
-
y2
b2
=1

(5)抛物线y=ax2的焦点坐标为(0,
1
4a
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南模拟)设椭圆C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右焦点分别为F1、F2,上顶点为A,离心率为
1
2
,在x轴负半轴上有一点B,且
BF2
=2
BF1

(1)若过A、B、F2三点的圆恰好与直线x-
3
y-3=0
相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0),使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

椭圆的方程为上有一点P,它到椭圆的左准线的距离等于10,求点P到它的右焦点的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列五个命题,其中真命题的序号是______(写出所有真命题的序号).
(1)已知C:
x2
2-m
+
y2
m2-4
=1
(m∈R),当m<-2时C表示椭圆.
(2)在椭圆
x2
45
+
y2
20
=1上有一点P,F1、F2是椭圆的左,右焦点,△F1PF2为直角三角形则这样的点P有8个.
(3)曲线
x2
10-m
+
y2
6-m
=1(m<6)
与曲线
x2
5-m
+
y2
9-m
=1(5<m<9)
的焦距相同.
(4)渐近线方程为y=±
b
a
x(a>0,b>0)
的双曲线的标准方程一定是
x2
a2
-
y2
b2
=1

(5)抛物线y=ax2的焦点坐标为(0,
1
4a
)

查看答案和解析>>

同步练习册答案