精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论函数的单调性;

2)判断并说明函数的零点个数.若函数所有零点均在区间内,求的最小值.

【答案】1)函数的单调增区间为,单调减区间为2存在两个零点,详见解析; 的最小值为3

【解析】

1)求出导函数,由确定增区间,由确定减区间;

2)求出导函数,分类讨论的正负,确定的单调性,再根据零点存在定理确定零点存在的区间.首先确定上有一个零点,然后确定上有否零点,从而可得的最小值.

解:(1的定义域为

,得(舍).

时,,当时,

所以上单调递增,在上单调递减,

因此,函数的单调增区间为,单调减区间为.

2

时,

因为单调递减,

所以上单调递增,

所以存在唯一,使得.

所以单调递减,

所以上单调递增.

因为,所以,故不存在零点.

时,

所以单调递减,

所以存在,使得.

时,单调递增,

时,单调递减.

所以存在唯一,使得.

时,,故不存在零点.

综上,存在两个零点,且

因此的最小值为3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为123455个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如125),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如531),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10.

1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;

2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)当时,若直线是曲线的切线,求的最大值;

2)设,函数有两个不同的零点,求的最大整数值.(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年国庆节假期期间,某商场为掌握假期期间顾客购买商品人次,统计了1017:00-2300这一时间段内顾客0这一时间段内顾客购买商品人次,统计发现这一时间段内顾客购买商品共5000人次顾客购买商品时刻的频率分布直方图如下图所示,其中时间段7:00 11:0011:00 15:0015:00 ~19:0019:00~23:00,依次记作[711),[1115),[1519),[1923].

1)求该天顾客购买商品时刻的中位数t与平均值(同一组中的数据用该组区间的中点值代表);

2)现从101日在该商场购买商品的顾客中随机抽取100名顾客,经统计有男顾客 40人,其中10人购物时刻在[1923](夜晚),女顾客60人,其中50人购物时刻在[719)(白天),根据提供的统计数据,完成下面的2×2列联表,并判断是否有90%的把握认为男顾客更喜欢在夜晚购物”?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放以来,中国快递行业持续快速发展,快递业务量从上世纪年代的万件提升到2018年的亿件,快递行业的发展也给我们的生活带来了很大便利.已知某市某快递点的收费标准为:首重(重量小于等于)收费元,续重(不足). (:一个包裹重量为则需支付首付元,续重元,一共元快递费用)

1)若你有三件礼物重量分别为,要将三个礼物分成两个包裹寄出(:合为一个包裹,一个包裹),那么如何分配礼物,使得你花费的快递费最少?

2)对该快递点近天的每日揽包裹数(单位:)进行统计,得到的日揽包裹数分别为件,件,件,件,件,那么从这天中随机抽出天,求这天的日揽包裹数均超过件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,判断并说明函数的零点个数.若函数所有零点均在区间内,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥中,底面正方形的对角线交于点

1)求直线与平面所成角的正弦值;

2)求锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角中,通过以直线为轴顺时针旋转得到(.为斜边上一点.为线段上一点,且.

1)证明:平面

2)当直线与平面所成的角取最大值时,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线Cy2=2px(p>0)的焦点为F,准线为lAB为过焦点F且垂直于x轴的抛物线C的弦,已知以AB为直径的圆经过点(-10).

1)求p的值及该圆的方程;

2)设Ml上任意一点,过点MC的切线,切点为N,证明:MFNF.

查看答案和解析>>

同步练习册答案