精英家教网 > 高中数学 > 题目详情
12.若正数3x+4y+5z=6,则$\frac{1}{2y+z}$+$\frac{4y+2z}{x+z}$的最小值$\frac{7}{3}$.

分析 由题意化简可得原式=$\frac{x+z}{2(2y+z)}$+$\frac{2(2y+z)}{x+z}$+$\frac{1}{3}$,由基本不等式可得.

解答 解:∵正数3x+4y+5z=6,
∴$\frac{1}{2y+z}$+$\frac{4y+2z}{x+z}$=$\frac{3x+4y+5z}{6(2y+z)}$+$\frac{2(2y+z)}{x+z}$
=$\frac{3(x+z)+2(2y+z)}{6(2y+z)}$+$\frac{2(2y+z)}{x+z}$
=$\frac{x+z}{2(2y+z)}$+$\frac{2(2y+z)}{x+z}$+$\frac{1}{3}$
≥2$\sqrt{\frac{x+z}{2(2y+z)}•\frac{2(2y+z)}{x+z}}$+$\frac{1}{3}$=$\frac{7}{3}$
当且仅当$\frac{x+z}{2(2y+z)}$=$\frac{2(2y+z)}{x+z}$时,取等号
故答案为:$\frac{7}{3}$

点评 本题考查基本不等式,凑出可用基本不等式的形式是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A、B、c所对的边分别为a、b、c.又∠A=60°,sinB:sincC=2:3,AB边上的高为3$\sqrt{3}$,求a,b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数y=x3-2x2-x+2的零点,并画出它的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tan($\frac{π}{4}$+α)=3,且α为锐角.
(1)求tanα的值;
(2)求sin(α+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义域为(-∞,0)∪(0,+∞)的函数f(x)是奇函数,并且在(-∞,0)上是增函数,若f(-3)=0.
(1)求f(2x-1)<0的解集;
(2)求$\frac{x}{f(x)}<0$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)满足f(x)+1=$\frac{1}{f(x+1)}$,当x∈[0,1]时,f(x)=x,函数g(x)=f(x)-mx-m在[-1,1]内有2个零点,则实数m的取值范围是(  )
A.(0,$\frac{1}{2}$]B.(-1,$\frac{1}{2}$]C.[$\frac{1}{2},+∞$)D.(-∞,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\frac{{\sqrt{3}}}{2}cosx+\frac{1}{2}$sinx的单调增区间[2kπ-$\frac{5π}{6}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.点p在曲线y=x3-x+3上移动,过点p的切线方程的倾斜角的取值范围有是(  )
A.[0,π)B.[0,$\frac{π}{2}$)∪[$\frac{3}{4}$π,π)C.[0,$\frac{π}{2}$]∪($\frac{π}{2}$,$\frac{3}{4}$π]D.[0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}2x(x>0)\\ x+1(x≤0)\end{array}$,若f(a)+f(1)=0,求实数a的值.

查看答案和解析>>

同步练习册答案