精英家教网 > 高中数学 > 题目详情
已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于
3
3
分析:求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.
解答:解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,
于是对角线O1O2=OE,而OE=
OA2-AK2
=
22-12
=
3
,∴O1O2=
3

故答案为:
3
点评:本题考查球的有关概念,两平面垂直的性质,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知球O的表面积为16π,且球心O在60°的二面角α-l-β内部,若平面α与球相切于M点,平面β与球相截,且截面圆O1的半径为
3
,P为圆O1的圆周上任意一点,则M、P两点的球面距离的最值为

查看答案和解析>>

同步练习册答案