14£®ÒÑÖªÖ±Ïßl1ÓëÔ²ÐÄΪCµÄÔ²£¨x-1£©2+£¨y-2£©2=4ÏཻÓÚ²»Í¬µÄA£¬BÁ½µã£¬¶ÔƽÃæÄÚÈÎÒâµãQ¶¼ÓÐ$\overrightarrow{QC}=¦Ë\overrightarrow{QA}+£¨1-¦Ë£©\overrightarrow{QB}$£¬¦Ë¡ÊR£¬ÓÖµãPΪֱÏßl2£º3x+4y+4=0ÉϵĶ¯µã£¬Ôò$\overrightarrow{PA}•\overrightarrow{PB}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®21B£®9C£®5D£®0

·ÖÎö ÓÉ$\overrightarrow{QC}=¦Ë\overrightarrow{QA}+£¨1-¦Ë£©\overrightarrow{QB}$£¬¦Ë¡ÊR£¬µÃÈýµãA¡¢B¡¢C¹²Ïߣ¬ÓÉÏòÁ¿µÄÏßÐÔÔËËãµÄ$\overrightarrow{BA}=\overline{PA}-\overrightarrow{PB}$£¬$\overrightarrow{2PC}=\overrightarrow{PA}+\overrightarrow{PB}$⇒${\overrightarrow{BA}}^{2}={\overrightarrow{PA}}^{2}+{\overrightarrow{PB}}^{2}-2\overrightarrow{PA}•\overrightarrow{PB}$¡­¢Ù£¬$4{\overrightarrow{PC}}^{2}={\overrightarrow{PA}}^{2}+{\overrightarrow{PB}}^{2}+2\overrightarrow{PA}•\overrightarrow{PB}$¡­¢Ú£®
¢Ú-¢ÙµÃ$\overrightarrow{PA}•\overrightarrow{PB}={\overrightarrow{PC}}^{2}-\frac{1}{4}{\overrightarrow{BA}}^{2}$=${\overrightarrow{PC}}^{2}-4$£¬Çó³öPC·¶Î§¼´¿É£®

½â´ð ½â£º¡ß¶ÔƽÃæÄÚÈÎÒâµãQ¶¼ÓÐ$\overrightarrow{QC}=¦Ë\overrightarrow{QA}+£¨1-¦Ë£©\overrightarrow{QB}$£¬¦Ë¡ÊR£¬¡àÈýµãA¡¢B¡¢C¹²Ïߣ¬¼´ABΪԲCµÄÖ±¾¶£®
¡à$\overrightarrow{BA}=\overline{PA}-\overrightarrow{PB}$£¬$\overrightarrow{2PC}=\overrightarrow{PA}+\overrightarrow{PB}$⇒${\overrightarrow{BA}}^{2}={\overrightarrow{PA}}^{2}+{\overrightarrow{PB}}^{2}-2\overrightarrow{PA}•\overrightarrow{PB}$¡­¢Ù£¬$4{\overrightarrow{PC}}^{2}={\overrightarrow{PA}}^{2}+{\overrightarrow{PB}}^{2}+2\overrightarrow{PA}•\overrightarrow{PB}$¡­¢Ú£®
¢Ú-¢ÙµÃ$\overrightarrow{PA}•\overrightarrow{PB}={\overrightarrow{PC}}^{2}-\frac{1}{4}{\overrightarrow{BA}}^{2}$=${\overrightarrow{PC}}^{2}-4$£»
¡ßµãCµ½Ö±ÏßÖ±Ïßl2µÄ¾àÀëΪ3£¬¡à${\overrightarrow{PC}}^{2}¡Ý9$£¬¡à$\overrightarrow{PA}•\overrightarrow{PB}$µÄ×îСֵΪ5£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿µÄÏßÐÔÔËË㣬ÊýÐνáºÏ¡¢×ª»¯Ë¼ÏëÊǹؼü£¬ÊôÓÚѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªµãA£¨-1£¬0£©£¬B£¨1£¬0£©£¬Ö±ÏßAM£¬BMÏཻÓÚM£¬ÇÒËüÃǵÄбÂÊÖ®»ýΪ2£®
£¨1£©Ç󶯵ãMµÄ¹ì¼£·½³Ì£»
£¨2£©Èô¹ýµã$N£¨\frac{1}{2}£¬1£©$µÄÖ±Ïßl½»µãMµÄ¹ì¼£ÓÚC£¬DÁ½µã£¬ÇÒNΪÏ߶ÎCDµÄÖе㣬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖª¦ÁÊǵÚËÄÏóÏ޽ǣ¬sin£¨$\frac{5¦Ð}{2}$+¦Á£©=$\frac{1}{5}$£¬ÄÇôtan ¦ÁµÈÓÚ£¨¡¡¡¡£©
A£®-$\frac{2\sqrt{6}}{5}$B£®-2$\sqrt{6}$C£®2$\sqrt{6}$D£®$\frac{2\sqrt{6}}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÉèÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãM£¨$\sqrt{3}$£¬$\sqrt{2}$£©£¬ÇÒÀëÐÄÂÊΪ$\frac{\sqrt{3}}{3}$£¬Ö±Ïßl¹ýµãP£¨3£¬0£©£¬ÇÒÓëÍÖÔ²C½»ÓÚ²»Í¬µÄA¡¢BÁ½µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Çó$\overrightarrow{PA}$•$\overrightarrow{PB}$µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÍÖÔ²£ºC£º$\frac{{x}^{2}}{9}$+y2=1£¬µãM£¨0£¬$\frac{1}{2}$£©£®
£¨1£©ÉèPÊÇÍÖÔ²CÉÏÈÎÒâµÄÒ»µã£¬QÊǵãP¹ØÓÚ×ø±êÔ­µãµÄ¶Ô³Æµã£¬¼Ç¦Ë=$\overrightarrow{MP}$•$\overrightarrow{MQ}$£¬Çó¦ËµÄÈ¡Öµ·¶Î§£»
£¨2£©ÒÑÖªµãD£¨-1£¬-$\frac{1}{2}$£©£¬E£¨1£¬-$\frac{1}{2}$£©£¬PÊÇÍÖÔ²CÉÏÔÚµÚÒ»ÏóÏÞÄڵĵ㣬¼ÇlΪ¾­¹ýÔ­µãÓëµãPµÄÖ±Ïߣ¬sΪ¡÷DEM½ØÖ±ÏßlËùµÃµÄÏ߶㤣¬ÊÔ½«s±íʾ³ÉÖ±ÏßlµÄбÂÊkµÄº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈçͼËùʾ£¬ÔÚƽÃæËıßÐÎABCDÖУ¬AB=1£¬BC=2£¬¡÷ACDΪÕýÈý½ÇÐΣ¬Ôò¡÷BCDÃæ»ýµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®2B£®$\sqrt{5}$C£®$\sqrt{2}+1$D£®$\sqrt{3}+1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®É輯ºÏA={x|x£¼3}£¬B={x|2x£¾4}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®B£®{x|0£¼x£¼3}C£®{x|1£¼x£¼3}D£®{x|2£¼x£¼3}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èô·½³Ì$\frac{{x}^{2}}{10-k}$+$\frac{{y}^{2}}{5-k}$=1±íʾ˫ÇúÏߣ¬ÔòkµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨5£¬10£©B£®£¨-¡Þ£¬5£©C£®£¨10£¬+¡Þ£©D£®£¨-¡Þ£¬5£©¡È£¨10£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®É躯Êýf£¨x£©=$\frac{a}{x}$+xlnx£¬g£¨x£©=-4x3+3x£¬¶ÔÈÎÒâµÄs£¬t¡Ê[$\frac{1}{2}$£¬2]£¬¶¼ÓÐf£¨s£©¡Ýg£¨t£©³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇa¡Ý1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸