【题目】某单位计划建造一间背面靠墙的小屋,其地面面积为12m2,墙面的高度为3m,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为m,房屋背面和地面的费用不计.
(1)用含的表达式表示出房屋的总造价;
(2)当为多少时,总造价最低?最低造价是多少?
科目:高中数学 来源: 题型:
【题目】随着我国经济的发展,居民收入逐年增长.某地区2014年至2018年农村居民家庭人均纯收入(单位:千元)的数据如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号 | 1 | 2 | 3 | 4 | 5 |
人均纯收入 | 5 | 4 | 7 | 8 | 10 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,分析2014年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测2019年该地区农村居民家庭人均纯收入为多少?
附:回归直线的斜率和截距的最小二乘估计公式分别为,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用适当的方法表示下列集合:
(1)方程组的解集;
(2)方程的实数根组成的集合;
(3)平面直角坐标系内所有第二象限的点组成的集合;
(4)二次函数的图象上所有的点组成的集合;
(5)二次函数 的图象上所有点的纵坐标组成的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形所在平面与四边形所在平面互相重直,是等腰直角三角形,,,.
(1)求证:平面;
(2)设线段、的中点分别为、,求与所成角的正弦值;
(3)求二面角的平面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少小时?
(注:=,=-b)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程为ρ2=.
(1)若以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,求曲线C的直角坐标方程;
(2)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com