A. | [1,+∞) | B. | (1,+∞) | C. | $[\frac{1}{2e-1},+∞)$ | D. | $(\frac{1}{2e-1},+∞)$ |
分析 当x>0时,f(x)=e2x+$\frac{1}{x}$,利用基本不等式可求f(x)的最小值,对函数g(x)求导,利用导数研究函数的单调性,进而可求g(x)的最大值,由$\frac{{g({x_1})}}{k}≤\frac{{f({x_2})}}{k+1}$恒成立且k>0,则 $\frac{{g(x)}_{max}}{k}$≤$\frac{{f(x)}_{min}}{k+1}$,可求k的范围.
解答 解:∵当x>0时,f(x)=e2x+$\frac{1}{x}$≥2 $\sqrt{{e}^{2}x•\frac{1}{x}}$=2e,
∴x1∈(0,+∞)时,函数f(x1)有最小值2e,
∵g(x)=$\frac{{e}^{2}x}{{e}^{x}}$,
∴g′(x)=$\frac{{e}^{2}(1-x)}{{e}^{x}}$,
当x<1时,g′(x)>0,则函数g(x)在(0,1)上单调递增,
当x>1时,g′(x)<0,则函数在(1,+∞)上单调递减,
∴x=1时,函数g(x)有最大值g(1)=e,
则有x1、x2∈(0,+∞),f(x1)min=2e>g(x2)max=e,
∵$\frac{{g({x_1})}}{k}≤\frac{{f({x_2})}}{k+1}$恒成立且k>0,
∴$\frac{e}{k}$≤$\frac{2e}{k+1}$,
∴k≥1,
故选:A.
点评 本题主要考查了利用基本不等式求解函数的最值,导数在函数的单调性,最值求解中的应用是解答本题的另一重要方法,函数的恒成立问题的转化,本题具有一定的难度.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 如果平面α⊥平面β,任取直线m?α,那么必有m⊥β | |
B. | 如果直线m∥平面α,直线n?α内,那么m∥n | |
C. | 如果直线m∥平面α,直线n∥平面α,那么m∥n | |
D. | 如果平面α外的一条直线m垂直于平面α内的两条相交直线,那么m⊥α |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com