(本题满分16分)已知数列的前项和为,对任意,点都在函数的图像上.
(1)求数列的通项公式;
(2)设,且数列是等差数列,求非零常数的值;[来源:学|科|网]
(3)设,是数列的前项和,求使得对所有都成立的最小正整数.
(1)()(2)(3)10
【解析】(1)由已知,对所有,,………………………………1分
所以当时,,………………………………………………………2分
当时,,……………………………………………3分
因为也满足上式,所以数列的通项公式为().……4分
(2)由已知,…………………………………………………………5分
因为是等差数列,可设(、为常数),………………………6分
所以,于是,
所以,……………………………………………………………………8分
因为,所以,.…………………………………………………10分
(注:用为定值也可解,或用其它方法解,可按学生解答步骤适当给分)
(3),………………………………12分
所以
………………………… 14分
由,得,因为,所以.
所以,所求的最小正整数的值为.………………………………………………16分
科目:高中数学 来源:2010-2011年江苏省淮安市楚州中学高二上学期期末考试数学试卷 题型:解答题
(本题满分16分)
已知函数,且对任意,有.
(1)求;
(2)已知在区间(0,1)上为单调函数,求实数的取值范围.
(3)讨论函数的零点个数?(提示:)
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高三10月阶段性测试理科数学试卷(解析版) 题型:解答题
(本题满分16分)已知函数为实常数).
(I)当时,求函数在上的最小值;
(Ⅱ)若方程在区间上有解,求实数的取值范围;
(Ⅲ)证明:
(参考数据:)
查看答案和解析>>
科目:高中数学 来源:2013届江苏省高二下期中理科数学试卷(解析版) 题型:解答题
(本题满分16分) 已知椭圆:的离心率为,分别为椭圆的左、右焦点,若椭圆的焦距为2.
⑴求椭圆的方程;
⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.
查看答案和解析>>
科目:高中数学 来源:2014届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题
(本题满分16分)已知函数是定义在上的偶函数,且当时,。
(Ⅰ)求及的值;
(Ⅱ)求函数在上的解析式;
(Ⅲ)若关于的方程有四个不同的实数解,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:江苏省2009-2010学年高二第二学期期末考试 题型:解答题
本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4 ;求四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com