精英家教网 > 高中数学 > 题目详情
18.如图,在△ABC中,$AB=2AC,cosB=\frac{{2\sqrt{5}}}{5}$,点D在线段BC上.
(1)当BD=AD时,求$\frac{AD}{AC}$的值;
(2)若AD是∠A的平分线,$BC=\sqrt{5}$,求△ADC的面积.

分析 (1)由已知利用同角三角函数基本关系式可求sinB的值,利用正弦定理可求$\frac{sinC}{sinB}=\frac{AB}{AC}$=2,由已知利用二倍角的正弦函数公式可得sin∠ADC=2sinBcosB,在△ADC中,利用正弦定理可求$\frac{AD}{AC}$的值;
(2)设AC=x,则AB=2x,由余弦定理可得x的值,进而可求DC,又由(1)可求sinC的值,利用三角形面积公式即可求值得解.

解答 (本题满分为12分)
解:(1)∵cosB=$\frac{2\sqrt{5}}{5}$,可得:sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{5}}{5}$,
∵$\frac{AC}{sinB}=\frac{AB}{sinC}$,AB=2AC,
∴$\frac{sinC}{sinB}=\frac{AB}{AC}$=2,…3分
∵BD=AD,可得∠ADC=2∠B,
∴sin∠ADC=sin2B=2sinBcosB,
∴在△ADC中,$\frac{AD}{AC}$=$\frac{sinC}{sin∠ADC}=\frac{2sinB}{2sinBcosB}$=$\frac{1}{cosB}$=$\frac{\sqrt{5}}{2}$…6分
(2)设AC=x,则AB=2x,
在△ABC中,由余弦定理可得:cosB=$\frac{(\sqrt{5})^{2}+(2x)^{2}-{x}^{2}}{4\sqrt{5}x}$,解得:x=1,或x=$\frac{5}{3}$,
因为:BD=2DC,所以:DC=$\frac{\sqrt{5}}{3}$…10分
又由(1)知sinC=2sinB=$\frac{2\sqrt{5}}{5}$,
①当x=1时,S△ADC=$\frac{1}{2}AC•DC•sinC$=$\frac{1}{2}×1×\frac{\sqrt{5}}{3}×\frac{2\sqrt{5}}{5}$=$\frac{1}{3}$;
②当x=$\frac{5}{3}$时,S△ADC=$\frac{1}{2}×\frac{5}{3}×\frac{\sqrt{5}}{3}×\frac{2\sqrt{5}}{5}$=$\frac{5}{9}$.
综上,△ADC的面积为$\frac{1}{3}$或$\frac{5}{9}$…12分

点评 本题主要考查了同角三角函数基本关系式,正弦定理,二倍角的正弦函数公式,余弦定理,三角形面积公式在解三角形中的综合应用,考查了转化思想和分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若O为△ABC所在平面内任一点,且满足($\overrightarrow{OB}$-$\overrightarrow{OC}$)•($\overrightarrow{OB}$+$\overrightarrow{OC}$-2$\overrightarrow{OA}$)=0,则△ABC的形状为(  )
A.等腰三角形B.直角三角形C.正三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知椭圆C:$\frac{{x}^{2}}{4}$+y2=1的左、右顶点分别为A、B,点M为C上不同于A、B的任意一点,则直线MA、MB的斜率之积为(  )
A.$\frac{1}{4}$B.-4C.-$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}{2^x}+1,x≤1\\ 1-{log_2}x,x>1\end{array}\right.$,则满足不等式f(1-m2)>f(2m-2)的m的取值范围是(  )
A.(-3,1)B.$(\frac{3}{2},+∞)$C.(-3,1)∪$(\frac{3}{2},+∞)$D.$(-3,\frac{3}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=2+tsinα\end{array}\right.(t$为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ
(1)求圆C的直角坐标方程;
(2)若点P(1,2),设圆C与直线l交于点A、B,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$\frac{x^2}{a^2}+\frac{y^2}{9}=1(a>3)$的两个焦点为F1、F2,且|F1F2|=8,弦AB过点F1,则△ABF2的周长为(  )
A.10B.20C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\frac{3x}{a}-2{x^2}+lnx$,其中a为常数.
(1)若a=1,求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,2]上为单调增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数),已知该食品在0℃的保鲜时间是192小时,在33℃的保鲜时间是24小时
(1)求k的值
(2)该食品在11℃和22℃的保鲜时间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,复数z=a+i(a∈R)满足z2+z=1-3i,则a=(  )
A.-2B.-2或1C.2或-1D.1

查看答案和解析>>

同步练习册答案