精英家教网 > 高中数学 > 题目详情

【题目】设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a+b≠0时,都有 .
(1)若a>b,试比较f(a)与f(b)的大小关系;
(2)若f(1+m)+f(3-2m)≥0,求实数m的取值范围.

【答案】
(1)解:∵a>b,∴a-b>0,
,∴ ,∴ f(a)+f(-b)>0.
又∵f(x)是定义在R上的奇函数,
∴f(-b)=-f(b),
∴f(a)-f(b)>0,即f(a)>f(b)
(2)解:由(1)可知f(x)为R上的单调递增函数,
∵f(1+m)+f(3-2m)≥0,
∴f(1+m)≥-f(3-2m),即f(1+m)≥f(2m-3),
∴1+m≥2m-3,∴m≤4.
∴实数m的取值范围为(-∞,4]
【解析】(1)将条件不等式结合奇偶性转化为函数的单调性求解;
(2)将函数不等式结合奇偶性进行转化,由单调性脱去f得关于m的不等式求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为( ),直线l的极坐标方程为ρcos(θ﹣ )=a,且点A在直线l上,
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为 (α为参数),试判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为正方体,下面结论:① 平面 ;② ;③ 平面 .其中正确结论的个数是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2+bx+c(a,b,c∈R),若函数y=f(x)ex在x=﹣1处取得极值,则下列图象不可能为y=f(x)的图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬民族古典文化,市电视台举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确将给该选手记正10分,否则记负10分.根据以往统计,某参赛选手能答对每一个问题的概率均为 ;现记“该选手在回答完n个问题后的总得分为Sn”.
(1)求S6=20且Si≥0(i=1,2,3)的概率;
(2)记X=|S5|,求X的分布列,并计算数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程x2+ax+2a=0有解;命题q:函数f(x)= 在R上是单调函数.
(1)当命题q为真命题时,求实数a的取值范围;
(2)当p为假命题,q为真命题时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+ (a∈R)是定义域为R的奇函数,其中e是自然对数的底数.
(1)求实数a的值;
(2)若存在x∈(0,+∞),使不等式f(x2+x)+f(2﹣tx)<0成立,求实数t的取值范围;
(3)若函数y=e2x+ ﹣2mf(x)在(m,+∞)上不存在最值,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有2名男生和3名女生. (Ⅰ)若其中2名男生必须相邻排在一起,则这5人站成一排,共有多少种不同的排法?
(Ⅱ)若男生甲既不能站排头,也不能站排尾,这5人站成一排,共有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为( ),直线l的极坐标方程为ρcos(θ﹣ )=a,且点A在直线l上,
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为 (α为参数),试判断直线l与圆C的位置关系.

查看答案和解析>>

同步练习册答案