精英家教网 > 高中数学 > 题目详情
4.如图,四棱锥P-ABCD的底面是正方形,侧棱PA⊥底面ABCD,E是PA的中点.
(Ⅰ)求证:PC∥平面BDE;
(Ⅱ)证明:BD⊥CE.

分析 (Ⅰ)连结AC交BD于O,连结OE,推导出PC∥OE,由此能证明PC∥平面BDE.
(Ⅱ)推导出BD⊥AC,PA⊥BD,从而BD⊥平面PAC,由此能证明BD⊥CE.

解答 (本小题满分13分)
证明:(Ⅰ)连结AC交BD于O,连结OE,
因为四边形ABCD是正方形,所以O为AC中点.
又因为E是PA的中点,所以PC∥OE,…(3分)
因为PC?平面BDE,OE?平面BDE,
所以PC∥平面BDE.…(6分)
(Ⅱ)因为四边形ABCD是正方形,所以BD⊥AC.…(8分)
因为PA⊥底面ABCD,且BD?平面ABCD,
所以PA⊥BD.…(10分)
又因为AC∩PA=A,所以BD⊥平面PAC,…(12分)
又CE?平面PAC,
所以BD⊥CE.…(13分)

点评 本题考查线面平行、线线垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.“a≤0”是“函数f(x)=ax+lnx存在极值”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知命题p:?x∈R,x2-2x+1>0,则¬p是?x>1,x2-2x+1≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个正三棱柱的正视图、俯视图如图所示,则该三棱柱的侧视图的面积为8$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出下列判断,其中正确的是(  )
A.三点唯一确定一个平面
B.一条直线和一个点唯一确定一个平面
C.两条平行线与同一条直线相交,三条直线在同一平面内
D.空间两两相交的三条直线在同一平面内

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设复数z=2-i(i为虚数单位),则复数z2=3-4i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知m∈R,命题p:复数z=(m-2)+mi(i是虚数单位)在复平面内对应的点在第二象限,命题q:复数z=(m-2)+mi的模不大于$\sqrt{10}$.
(1)若p为真命题,求m的取值范围;
(2)若命题¬p,命题q都为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(c,0),圆M:(x-a)2+y2=c2,双曲线以椭圆C的焦点为顶点,顶点为焦点,若双曲线的两条渐近线都与圆M相切,则椭圆C的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)计算:$\frac{{5{x^{-\frac{2}{3}}}{y^{\frac{1}{2}}}}}{{({-\frac{1}{4}{x^{-1}}{y^{\frac{1}{2}}}})({-\frac{5}{6}{x^{\frac{1}{2}}}{y^{-\frac{1}{6}}}})}}$;
(2)已知log53=a,log52=b,用a,b表示log2512.

查看答案和解析>>

同步练习册答案