精英家教网 > 高中数学 > 题目详情
如图直线l与x轴、y轴的正半轴分别交于A(8,0)、B(0,6)两点,P为直线l上异于A、B两点之间的一动点.且PQ∥OA交OB于点Q.
(1)若△PBQ和四边形OQPA的面积满足S四OQPA=3S△PBQ时,请你确定P点在AB上的位置,并求出线段PQ的长;
(2)在x轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点M与P的坐标;若不存在,说明理由.
分析:(1)由△PBQ和四边形OQPA的面积满足S四OQPA=3S△PBQ,可得S△BOA=4S△PBQ,进而根据S△BOA∽S△PBQ,可得到两个三角形的相似比,进而得到线段PQ的长;
(2)若△MPQ为等腰直角三角形,则O,P,M三点均有可能为直角顶点,分析讨论后,综合讨论结果,可得答案.
解答:解:(1)∵S四OQPA=3S△PBQ
∴S△BOA=4S△PBQ
又∵PQ∥OA
∴S△BOA∽S△PBQ
根据相似三角形面积比等于相似比的平方,
可得S△BOA与S△PBQ的相似比为1:2
PQ
OA
=
1
2

即PQ=
1
2
OA=4
(2)由(1)可知直线l的方程为3x+4y=24…(*)

①若△MPQ为等腰直角三角形,Q为直角顶点
则此时M点与原点重合,设Q点坐标为(0,a),则P点坐标为(a,a)
将P点坐标代入*得a=
24
7

即M,P的坐标分别为(0,0)(
24
7
24
7

②若△MPQ为等腰直角三角形,P为直角顶点
设Q点坐标为(0,a),则P点坐标为(a,a),M点坐标为(a,0)
将P点坐标代入*得a=
24
7

即M,P的坐标分别为(
24
7
,0)(
24
7
24
7

③若△MPQ为等腰直角三角形,M为直角顶点
则|OM|=|OQ|=
1
2
|PQ|
设Q(0,a),则M(a,0),点P坐标为(2a,a)
将P点坐标代入(*)式 得a=
12
5

∴点M、P的坐标分别为(
12
5
,0),(
24
5
12
5
点评:本题考查的知识点是相似三角形的判定与性质,直线方程与直线的交点,其中(2)中要注意O,P,M三点均有可能为直角顶点,要分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图直线l与x轴、y轴的正半轴分别交于A、B两点,OA、OB的长分别是关于x的方程x2-14x+4(AB+2)=0的两个根(OA<OB),P为直线l上异于A、B两点之间的一动点. 且PQ∥OB交OA于点Q.
(1)求直线lAB斜率的大小;
(2)若S△PAQ=
13
S四OQPB
时,请你确定P点在AB上的位置,并求出线段PQ的长;
(3)在y轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点M的坐标;
若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过点P(2,1)作直线l,与x轴、y轴正半轴分别交于A、B两点.求:

(1)△AOB面积的最小值及此时直线l的方程;

(2)求直线l在两坐标轴上截距之和的最小值及此时直线l的方程;

(3)求|PA|·|PB|的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图直线l与x轴、y轴的正半轴分别交于A、B两点,OA、OB的长分别是关于x的方程x2-14x+4(AB+2)=0的两个根(OA<OB),P为直线l上异于A、B两点之间的一动点. 且PQ∥OB交OA于点Q.
(1)求直线lAB斜率的大小;
(2)若数学公式时,请你确定P点在AB上的位置,并求出线段PQ的长;
(3)在y轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点M的坐标;
若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年宁夏银川一中高一(上)期末数学试卷(解析版) 题型:解答题

如图直线l与x轴、y轴的正半轴分别交于A(8,0)、B(0,6)两点,P为直线l上异于A、B两点之间的一动点.且PQ∥OA交OB于点Q.
(1)若△PBQ和四边形OQPA的面积满足S四OQPA=3S△PBQ时,请你确定P点在AB上的位置,并求出线段PQ的长;
(2)在x轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点M与P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案