精英家教网 > 高中数学 > 题目详情
11.偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为(  )
A.-2B.-1C.0D.1

分析 根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.

解答 解:∵f(x+2)为奇函数,
∴f(-x+2)=-f(x+2),
∵f(x)是偶函数,
∴f(-x+2)=-f(x+2)=f(x-2),
即-f(x+4)=f(x),
则f(x+4)=-f(x),f(x+8)=-f(x+4)=f(x),
即函数f(x)是周期为8的周期函数,
则f(89)=f(88+1)=f(1)=1,
f(90)=f(88+2)=f(2),
由-f(x+4)=f(x),
得当x=-2时,-f(2)=f(-2)=f(2),
则f(2)=0,
故f(89)+f(90)=0+1=1,
故选:D.

点评 本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD的底面为直角梯形,且∠BAD=∠ADC=90°,E,F,G分别为PA,PB,PC的中点,直线PB⊥平面EFG,AB=$\frac{1}{3}$DC=$\frac{1}{3}AD$=1.
(1)若点M∈平面EFG,且与点E不重合,判断直线EM与平面ABCD的关系,并说明理由;
(2)若PB=4,求四棱锥C-ABFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若△ABC的内角A,B,C所对的边分别为a,b,c,且满足asinB-$\sqrt{3}$bcosA=0
(1)求A;
(2)当a=$\sqrt{7}$,b=2时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的离心率为2,焦点到渐近线的距离为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆C1:(x-1)2+(y-1)2=1关于直线x+y=0对称的圆C2的方程为(  )
A.(x+1)2+(y-1)2=1B.(x-1)2+(y+1)2=1
C.(x+1)2+(y+1)2=1D.(x+1)2+(y-1)2=1或(x-1)2+(y+1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)的定义在(0,+∞)的函数,对任意两个不相等的正数x1,x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,记a=$\frac{f({3}^{0.2})}{{3}^{0.2}}$,b=$\frac{f({0.3}^{2})}{{0.3}^{2}}$,c=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,则(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知关于x的方程:x2+2(a-1)x+2a+6=0.
(Ⅰ)若该方程有两个不等实数根,求实数a的取值范围;
(Ⅱ)若该方程有两个不等实数根,且这两个根都大于1,求实数a的取值范围;
(Ⅲ)设函数f(x)=x2+2(a-1)x+2a+6,x∈[-1,1],记此函数的最大值为M(a),最小值为N(a),求M(a),N(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a=tan$\frac{3}{4}$π,b=cos$\frac{π}{4}$,c=(1+sin$\frac{6}{5}$π)0,则a,b,c的大小关系是(  )
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD的底面ABCD是正方形,PA⊥平面ABCD,AP=AD=1,点E在PC上,且PE=$\frac{1}{2}$EC,点F是PD的中点.
(1)求证:PC⊥AF;
(2)求三棱锥A-CEF的体积.

查看答案和解析>>

同步练习册答案