精英家教网 > 高中数学 > 题目详情

(1)(坐标系与参数方程选做题)已知在极坐标系下,点是极点,则的面积等于_______;

(2).(不等式选择题)关于的不等式的解集是____    ____。

 

【答案】

1)(2)

【解析】

试题分析:(1)由是极点,知中,|OA|=1,|OB|=3,,所以的面积等于

(2)等价于,所以,关于的不等式的解集是

考点:本题主要考查极坐标系,绝对值不等式、分式不等式的解法。

点评:中档题,解答极坐标问题,可以结合图形分析,也可以化为直角坐标问题求解。解绝对值不等式,一般要考虑去绝对值符号,分类讨论、两边平方、利用绝对值的定义等等,均为有效方法。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(三选一,考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(坐标系与参数方程选做题)在直角坐标系中圆C的参数方程为
x=1+2cosθ
y=
3
+2sinθ
(θ为参数),则圆C的普通方程为
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式选讲选做题)设函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解集为
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.本题共5分.
(1)(坐标系与参数方程选做题)若曲线的极坐标方程为ρ=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为
x2+y2-4x-2y=0
x2+y2-4x-2y=0

(2)(不等式选择题)对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下面两题中任选一题作答,如果都做,则按所做第1题评分)
(1)(坐标系与参数方程选做题)
曲线C1
x=1+cosθ
y=sinθ
(θ为参数)上的点到曲线C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t为参数)
上的点的最短距离为
1
1

(2)(几何证明选讲选做题)
如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=1,则AD的长为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)(1)(坐标系与参数方程选做题)曲线C的直角坐标方程为x2+y2-2x=0,以原点为极点,x轴的正半轴为极轴建立积坐标系,则曲线C的极坐标方程为
ρ=2cosθ
ρ=2cosθ

(2)(不等式选做题)在实数范围内,不等式|2x-1|+|2x+1|≤6的解集为
{x|-
3
2
≤ x≤
3
2
}
{x|-
3
2
≤ x≤
3
2
}

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分.
(1)(坐标系与参数方程选做题) 在极坐标系下,已知直线l的方程为ρcos(θ-
π
3
)=
1
2
,则点M(1,
π
2
)到直线l的距离为
3
-1
2
3
-1
2

(2)(几何证明选讲选做题) 如图,P为圆O外一点,由P引圆O的切线PA与圆O切于A点,引圆O的割线PB与圆O交于C点.已知AB⊥AC,PA=2,PC=1.则圆O的面积为
4
4

查看答案和解析>>

同步练习册答案