精英家教网 > 高中数学 > 题目详情
Pn(xn,yn)是函数y=x2(x≥0)图象上的动点,以Pn为圆心的⊙Pn与x轴都相切,且⊙Pn与⊙Pn+1又彼此外切,若x1=1,xn+1<xn
(1)求证:数列{
1
xn
}
是等差数列;
(2)设⊙Pn的面积为Sn,求证:
S1
+
S2
+…+
Sn
3
π
2
(1)证:由⊙Pn与x轴都相切,知⊙Pn的半径rn=yn=xn2;又⊙Pn与⊙Pn+1外切,得:|PnPn+1|=rn+rn+1?
(xn-xn+1)2+(yn-yn+1)2
=yn+yn+1
?(xn-xn+12=4ynyn+1=4xn2xn+12
由xn>xn+1>0得:xn-xn+1=2xnxn+1?
1
xn+1
-
1
xn
=2

{
1
xn
}
是首项为1,公差为2的等差数列.
(2)S1=π(x14S2=π(x24…Sn=π(xn4
约去
π
证明(x12+(x22+…(xn2
3
2
即可
由(1)知(x1)2+(x22+…(xn2
=1+(
1
3
2+(
1
5
2+…(
1
2n-1
2
因为1+(
1
2
2+(
1
3
2+(
1
4
2+…(
1
n
)2
=[1+(
1
3
2+(
1
5
2+…(
1
2n-1
2]+
1
4
[1+(
1
2
2+(
1
3
2+(
1
4
2+…(
1
n
2]
即1+(
1
3
2+(
1
5
2+…(
1
2n-1
2=
3
4
1+(
1
2
2+(
1
3
2+(
1
4
2+…(
1
n
)2
又因为 1+[(
1
2
2+(
1
3
2+(
1
4
2+(
1
5
2+(
1
6
2+(
1
7
2]+(
1
8
2+…
<1+[(
1
2
2+(
1
2
2+(
1
4
2+(
1
4
2+(
1
4
2+(
1
4
2+8(
1
8
2+…
=1+
1
2
+
1
4
+
1
8
…=2
即就是1+(
1
2
2+(
1
3
2+(
1
4
2+…(
1
n
2<2
所以 1+(
1
3
2+(
1
5
2+…(
1
2n-1
)<
3
4
×2=
3
2

即1+(
1
3
2+(
1
5
2+…(
1
2n-1
)<
3
2

所以
S1
+
S2
+
S3
+…+
Sn
3
π
2

Tn
3
π
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

Pn(xn,yn)是函数y=x2(x≥0)图象上的动点,以Pn为圆心的⊙Pn与x轴都相切,且⊙Pn与⊙Pn+1又彼此外切,若x1=1,xn+1<xn
(1)求证:数列{
1
xn
}
是等差数列;
(2)设⊙Pn的面积为Sn,求证:
S1
+
S2
+…+
Sn
3
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•普陀区一模)设点F是抛物线L:y2=4x的焦点,P1(x1,y1),P2(x2,y2),…Pn(xn,yn)是抛物线L上的n个不同的点n(n≥3,n∈N*
(1)若抛物线L上三点P1、P2、P3的横坐标之和等于4,求|
FP1
|+|
FP2
|+|
FP3
|
的值;
(2)当n≥3时,若
FP1
+
FP2
+…+
FPn
=
0
,求证:|
FP1
|+|
FP2
|+…+|
FPn
|   =2n

(3)若将题设中的抛物线方程y2=4x推广为y2=2px(p>0),请类比小题(2),写出一个一般化的命题及其逆命题,并判断其逆命题的真假.若是真命题,请予以证明;若是假命题,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设点F是抛物线L:y2=4x的焦点,P1(x1,y1),P2(x2,y2),…Pn(xn,yn)是抛物线L上的n个不同的点n(n≥3,n∈N*
(1)若抛物线L上三点P1、P2、P3的横坐标之和等于4,求数学公式的值;
(2)当n≥3时,若数学公式,求证:数学公式
(3)若将题设中的抛物线方程y2=4x推广为y2=2px(p>0),请类比小题(2),写出一个一般化的命题及其逆命题,并判断其逆命题的真假.若是真命题,请予以证明;若是假命题,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年上海市普陀区高考数学一模试卷(文科)(解析版) 题型:解答题

设点F是抛物线L:y2=4x的焦点,P1(x1,y1),P2(x2,y2),…Pn(xn,yn)是抛物线L上的n个不同的点n(n≥3,n∈N*
(1)若抛物线L上三点P1、P2、P3的横坐标之和等于4,求的值;
(2)当n≥3时,若,求证:
(3)若将题设中的抛物线方程y2=4x推广为y2=2px(p>0),请类比小题(2),写出一个一般化的命题及其逆命题,并判断其逆命题的真假.若是真命题,请予以证明;若是假命题,请说明理由.

查看答案和解析>>

同步练习册答案