精英家教网 > 高中数学 > 题目详情

点P与点N关于y轴对称,而点N与点M(-4,3)关于原点对称,则点P的坐标是


  1. A.
    (-4,-3)
  2. B.
    (3,-4)
  3. C.
    (4,-3)
  4. D.
    (4,3)
A
分析:根据点N与点M(-4,3)关于原点对称,又有关于原点对称的点的坐标是横标和纵标都互为相反数,得到N的坐标,根据点P与点N关于y轴对称,又有关于纵轴对称的两个点的坐标横标相反,纵标相同,得到P点的坐标.
解答:∵点N与点M(-4,3)关于原点对称,
∴点N的坐标是(4,-3)
∵点P与点N关于y轴对称,
∴点P的坐标是(-4,-3)
故选A
点评:本题是一个关于坐标轴和坐标原点对称的点的坐标的特点,解题时注意数字的符合,这是一个基础题,一般是一个题目的一小部分.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•松江区一模)定义变换T将平面内的点P(x,y)(x≥0,y≥0)变换到平面内的点Q(
x
y
)

若曲线C0
x
4
+
y
2
=1(x≥0,y≥0)
经变换T后得到曲线C1,曲线C1经变换T后得到曲线C2…,依此类推,曲线Cn-1经变换T后得到曲线Cn,当n∈N*时,记曲线Cn与x、y轴正半轴的交点为An(an,0)和Bn(0,bn).某同学研究后认为曲线Cn具有如下性质:
①对任意的n∈N*,曲线Cn都关于原点对称;
②对任意的n∈N*,曲线Cn恒过点(0,2);
③对任意的n∈N*,曲线Cn均在矩形OAnDnBn(含边界)的内部,其中Dn的坐标为Dn(an,bn);
④记矩形OAnDnBn的面积为Sn,则
lim
n→∞
Sn=1

其中所有正确结论的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•漳州模拟)本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)选修4-4:坐标系与参数方程
已知直角坐标系xOy中,直线l的参数方程为
x=t-3 
y=
3
(t为参数).以直角坐标系xOy中的原点O为 极点,x轴的非负半轴为极轴,圆C的极坐标方程为ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐标方程;
(Ⅱ) P为圆C上的点,求P到l距离的取值范围.
(3)选修4-5:不等式选讲
已知关于x的不等式:|x-1|+|x+2|≥a2+2|a|-5对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:漳州模拟 题型:解答题

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)选修4-4:坐标系与参数方程
已知直角坐标系xOy中,直线l的参数方程为
x=t-3 
y=
3
(t为参数).以直角坐标系xOy中的原点O为 极点,x轴的非负半轴为极轴,圆C的极坐标方程为ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐标方程;
(Ⅱ) P为圆C上的点,求P到l距离的取值范围.
(3)选修4-5:不等式选讲
已知关于x的不等式:|x-1|+|x+2|≥a2+2|a|-5对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案