精英家教网 > 高中数学 > 题目详情
a
b
是两个非零的平面向量,则“|
a
|=|
b
|”是“(
a
+
b
)•(
a
-
b
)=0”的(  )
A、充分且不必要条件
B、必要且不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:平面向量及应用,简易逻辑
分析:根据向量数量积的关系以及充分条件和必要条件的定义进行判断即可.
解答: 解:若“(
a
+
b
)•(
a
-
b
)=0,则
a
2-
b
2=0,即
a
2=
b
2,则|
a
|=|
b
|,
反之亦然,充分性成立,
故“|
a
|=|
b
|”是“(
a
+
b
)•(
a
-
b
)=0”的充要条件,
故选:C.
点评:本题主要考查充分条件和必要条件的判断,根据向量数量积的公式是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(调查某市出租车使用年限x和该年支出维修费用y(万元),得到数据如下:
使用年限x23456
维修费用y2.23.85.56.57.0
(1)求线性回归方程y=
?
b
x+
?
a
;                 
参考公式
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
?
a
=
.
y
-
?
b
.
x

(2)由(1)中结论预测第10年所支出的维修费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为a,则
A1B
B1C
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
-1
2
+
sin
5x
2
2sin
x
2
,x∈(0,π)
(1)将f(x)表示成cosx的多项式
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
x+2y-4≤0
x≥0
y≥0
表示平面区域为D,在区域D内随机取一点P,则点P落在圆x2+y2=1内的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:(1-a)x+ay-2=0,l2:ax+(2a+1)y+3=0,则“a=-2”是“l1⊥l2”成立的(  )
A、充分不变要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

“q≤1”是“函数f(x)=x2-x+q存在零点”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*
(1)求an与an+1的关系式;
(2)在满足条件的所有数列{an}中,求a2015最小值;
(3)若数列{an}各项都为正数,设数列{bn}满足an(2bn-1)=3,并记Tn为{bn}的前n项和,问:是否存在常数c使得对任意的正整数n,都有Tn≥c成立?如果存在,请写出c的取值范围;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的S值为(  )
A、7B、8C、16D、24

查看答案和解析>>

同步练习册答案