精英家教网 > 高中数学 > 题目详情

已知直角的三边长,满足
(1)在之间插入2011个数,使这2013个数构成以为首项的等差数列,且它们的和为,求的最小值;
(2)已知均为正整数,且成等差数列,将满足条件的三角形的面积从小到大排成一列,且,求满足不等式的所有的值;
(3)已知成等比数列,若数列满足,证明:数列中的任意连续三项为边长均可以构成直角三角形,且是正整数.

(1)最小值为; (2) 2、3、4.
(3)证明:由成等比数列,.
由于为直角三角形的三边长,证明数列中的任意连续三项为边长均可以构成直角三角形. 证得
故对于任意的都有是正整数.

解析试题分析:(1)是等差数列,∴,即. 2分
所以,的最小值为; 4分
(2) 设的公差为,则 5分
设三角形的三边长为,面积
. 7分

时,
经检验当时,,当时, 9分
综上所述,满足不等式的所有的值为2、3、4. 10分
(3)证明:因为成等比数列,.
由于为直角三角形的三边长,知, 11分
,得
于是
.… 12分
,则有.
故数列中的任意连续三项为边长均可以构成直角三角形. 14分
因为

, 15分
,同理可得
故对于任意的都有是正整数. 16分
考点:本题主要考查等差数列、等比数列的基础知识,构成直角三角形的条件。
点评:难题,本题综合性较强,涉及等差数列、等比数列、不等式及构成直角三角形的条件。对法则是自点变形能力要求高,易出错。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知等差数列的前项和满足
(Ⅰ)求的通项公式;
(Ⅱ)求数列的前项和。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为
(1)求
(2)求知数列的通项公式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项都是正数,且满足:
(1)求
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△中,角成等差数列,且
(1)求角
(2)设数列满足,前项为和,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为
(Ⅰ)计算
(Ⅱ)根据(Ⅰ)所得到的计算结果,猜想的表达式,不必证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项均为正数,为其前项和,且对任意的,有.
(1)求数列的通项公式;
(2)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知数列是等差数列,,数列的前n项和是,且.
(I)求数列的通项公式;
(II)求证:数列是等比数列;

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在等差数列{an}中,其前n项和是,若,则在中最大的是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案