精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=4x2﹣4ax+a2﹣2a+2在区间[0,2]上有最小值3,求实数a的值.

【答案】

【解析】试题分析:确定二次函数的最值,首先要确定其在定义域上的单调性,本题中二次函数对称轴为,因此首先讨论对称轴位置的三种情况:≤00<<2≥2,从而确定其单调性,将最值转化为用a表示的关系式,求解a

试题解析:∵fx)=4x22a2

≤0,即a≤0时,函数fx)在[0,2]上是增函数.

∴fxminf0)=a22a2

a22a23,得a

∵a≤0∴a1

0<<2,即0<a<4时,

fxminf)=-2a2

由-2a23,得a=-0,4),舍去.

≥2,即a≥4时,函数fx)在[0,2]上是减函数,

fxminf2)=a210a18

a210a183,得a

∵a≥4∴a5

综上所述,a1a5

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:

(1)求回归直线方程;

(2)试预测广告费支出为万元时,销售额多大?

(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过的概率.(参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一鲜花店一个月(30天)某种鲜花的日销售量与销售天数统计如下:

日销售量(枝)

0~49

50~99

100~149

150~199

200~250

销售天数(天)

3天

3天

15天

6天

3天

将日销售量落入各组区间的频率视为概率.

(1)试求这30天中日销售量低于100枝的概率;

(2)若此花店在日销售量低于100枝的6天中选择2天作促销活动,求这2天的日销售量都低于50枝的概率(不需要枚举基本事件).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①分类变量的随机变量越大,说明“有关系”的可信度越大.

②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和0.3.

③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为中,

.正确的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆

(1)若过点的圆的切线只有一条,求的值及切线方程;

(2)若过点且在两坐标轴上截距相等的直线与圆相切,求的值及切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有,且当时,,又.

(1)判断该函数的奇偶性并说明理由;、

(2)试判断该函数在上的单调性;

(3)求在区间的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长均相等的正三棱柱ABCA1B1C1中,D为BB1的中点,F在AC1上,且DF⊥AC1,则下述结论:

①AC1⊥BC;

②AF=FC1

③平面DAC1⊥平面ACC1A1,其中正确的个数为( )

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)当a=3时,求A∩B;

(2)若a>0,且A∩B=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,若

(1)求函数的解析式;

(2)画出函数的图象,并说出函数的单调区间;

(3)若,求相应的值.

查看答案和解析>>

同步练习册答案