精英家教网 > 高中数学 > 题目详情
13.求分别满足下列条件的椭圆C的标准方程.
(1)过点(3,-2)且与椭圆4x2+9y2=36有相同焦点.
( 2 )中心为原点,焦点在x轴上,离心率为$\frac{{\sqrt{2}}}{2}$,过F1的直线交椭圆C于A、B两点,且△ABF2的周长为16,求椭圆C的标准方程.

分析 (1)根据已知求出焦点坐标,结合椭圆过点(3,-2),可得答案;
(2)由已知可得e=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$,4a=16,进而可得答案.

解答 解:(1)在椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$中c2=a2-b2=9-4=5.
设椭圆方程为$\frac{x^2}{a^2}+\frac{y^2}{{{a^2}-5}}=1$,代入点(3,-2),即$\frac{9}{a^2}+\frac{4}{{{a^2}-5}}=1$,…(3分)
解得a2=15或3(舍去),
∴椭圆C的标准方程为:$\frac{{x}^{2}}{15}+\frac{{y}^{2}}{10}=1$…(6分)
(2)设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
据题意e=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$,4a=16,…(8分)
∴a=4,c=2$\sqrt{2}$,b2=a2-c2=8,
∴椭圆C的标准方程为:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{8}=1$.…(12分)

点评 本题考查的知识点是椭圆的简单性质,椭圆的标准方程,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知数列 {an},{bn}满足 bn=an+an+1,则“数列{an}为等差数列”是“数列{bn}为 等差数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.即不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列叙述中错误的是(  )
A.若点P∈α,P∈β且α∩β=l,则P∈l
B.三点A,B,C能确定一个平面
C.若直线a∩b=A,则直线a与b能够确定一个平面
D.若点A∈l,B∈l,且A∈α,B∈α,则l?α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$f(x)=\left\{\begin{array}{l}{log_a}({a{x^2}-4x+4}),x≥1\\({3-a})x+b,x≤1\end{array}\right.$在(-∞,+∞)上满足$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,则b的取值范围是(  )
A.(-∞,0)B.[1,+∞)C.(-1,1)D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题错误的是(  )
A.命题“若x2=1,则x=1”的否定形式为:“若x2=1,则x≠1”.
B.命题“若x2+y2=0,则x=y=0”的逆否命题为真.
C.△ABC中,sinA>sinB是A>B的充要条件.
D.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$>0,则$\vec a$与$\vec b$的夹角为锐角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知随机变量X~B(n,$\frac{1}{3}$),若D(x)=$\frac{4}{3}$,则P(X=2)=(  )
A.$\frac{13}{15}$B.$\frac{2}{81}$C.$\frac{13}{243}$D.$\frac{80}{243}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:
(1)有男生、有女生且男生人数多于女生;
(2)某男生一定要担任数学科代表;
(3)某女生必须包含在内,但不担任数学科代表;
( 4 ) 某女生一定担任语文科代表,某男生必须担任科代表,但不担任数学科代表.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=|log25(x+1)-a|+2a+1,x∈[0,24],且a∈(0,1)
(Ⅰ)当$a=\frac{1}{2}$时,求f(x)的最小值及此时x的值;
(Ⅱ)当f(x)的最大值不超过3时,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|x2-2x-8<0},$B=\left\{{x\left|{\frac{6-x}{x+6}≤0}\right.}\right\}$,C={x|x2-5x-m<0},若x∈A∩∁RB是x∈C的充分条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案