精英家教网 > 高中数学 > 题目详情
函数f(x)是定义在[-1,1]上的偶函数,当x∈[-1,0]时,f(x)=x3-3ax(a为常数).
(1)当x∈[0,1]时,求f(x)的解析式;
(2)求f(x)在[0,1]上的最大值.
分析:(1)设x∈[0,1],则-x∈[-1,0],利用已知表达式即可求得f(-x),由偶函数性质可得f(-x)=f(x),从而可求f(x);
(2)x∈[0,1]时,f′(x)=-3x2+3a=-3(x2-a),按a范围分类讨论f(x)在[0,1]的单调性,由单调性即可求得最值;
解答:解:(1)设x∈[0,1],则-x∈[-1,0],所以f(-x)=-x3+3ax,
又因为f(x) 是偶函数,所以f(-x)=f(x),
故f(x)=-x3+3ax,x∈[0,1];
(2)x∈[0,1]时,f(x)=-x3+3ax,f′(x)=-3x2+3a=-3(x2-a),
ⅰ)当a≤0 时,f′(x)≤0恒成立,f(x)在[0,1]上单调递减.
fmax(x)=f(0)=0;
ⅱ)当 a>0时,由f′(x)=0得x=
a

①当a≥1 时,f′(x)≥0恒成立,f(x)在[0,1]上单调递增.
fmax(x)=f(1)=-1+3a;
②当0<a<1时,f′(x)=-3(x+
a
)(x-
a
),
当0≤x<
a
时,f′(x)>0,f(x)在递增,当
a
<x≤1时,f′(x)递减,
所以fmax(x)=f(
a
)=2a
a

综上所述:当a≤0时,fmax(x)=0;当a≥1时,fmax(x)=-1+3a;当0<a<1 时,fmax(x)=2a
a
点评:本题考查偶函数性质、函数最值及函数解析式的求法,考查分类讨论思想,考查学生分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,其最小正周期为3,且x∈(-
3
2
,0)时
,f(x)=log2(-3x+1),则f(2011)=(  )
A、-2
B、2
C、4
D、log27

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在N*的函数,且满足f(f(k))=3k,f(1)=2,设an=f(3n-1),b1=1,bn-log3f(an)=b1-log3f(a1).
(I)求bn的表达式;
(II)求证:
b1
f(a1)
+
b2
f(a2) 
+…+
bn
f(an)
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

奇函数f(x)是定义在[-1,1]上的增函数,且f(x-1)+f(1-2x)<0,则实数x的取值范围为
(0,1]
(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•临沂二模)已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈[-e,0)时,f(x)=ax-ln(-x),(a<0,a∈R)
(I)求f(x)的解析式;
(Ⅱ)是否存在实数a,使得当x∈(0,e]时f(x)的最大值是-3,如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

注:此题选A题考生做①②小题,选B题考生做①③小题.
已知函数f(x)是定义在R上的奇函数,且当x≥0时有f(x)=
4xx+4

①求f(x)的解析式;
②(选A题考生做)求f(x)的值域;
③(选B题考生做)若f(2m+1)+f(m2-2m-4)>0,求m的取值范围.

查看答案和解析>>

同步练习册答案