精英家教网 > 高中数学 > 题目详情

【题目】如图1所示,在等腰梯形中, .把沿折起,使得,得到四棱锥.如图2所示.

(1)求证:面

(2)求平面与平面所成锐二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)先由平面几何知识证明,可得从而得,进而可得于是最后由面面垂直的判定定理可得结论;(2)以点为原点,以所在直线分别为轴,建立如图所示的空间直角坐标系分别求出两半平面的一个法向量,根据空间向量夹角余弦公式可得结果.

试题解析:(1)证明:在等腰梯形,可知.因为,可得.

又因为,即,则.

,可得,故.

又因为,则

,则

所以

,所以

,所以面

(2)

,过点于点

以点为原点,以所在直线分别为轴,建立如图所示的空间直角坐标系.

中,∵

,则

,则

设平面的法向量为

,得

,可得平面的法向量为

设平面的一个法向量为

,得

,可得平面的一个法向量为.

设平面与平面所成锐二面角为

所以平面与平面所成锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.

(Ⅰ)求抛物线的方程;

(Ⅱ)设点 在抛物线上,直线 分别与轴交于点 .求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出如图所示的频率分布直方图,已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在[100,120]之间的学生人数是(

A.32
B.24
C.18
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(α)=
(1)若α为第二象限角且f(α)=﹣ ,求 的值;
(2)若5f(α)=4f(3α+2β).试问tan(2α+β)tan(α+β)是否为定值(其中α≠kπ+ ,α+β≠kπ+ ,2α+β≠kπ+ ,3α+2β≠kπ+ ,k∈Z)?若是,请求出定值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败(满分为100分).

(1)求图中的值;

(2)估计该次考试的平均分(同一组中的数据用该组的区间中点值代表);

(3)根据已知条件完成下面列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?

(参考公式: ,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为 .

1)求数列的通项公式;

2)令设数列的前项和为

3)令恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线过点且不与轴、轴垂直,且与圆 两点,过的平行线交直线于点.

(1)证明为定值,并写出点的轨迹方程;

(2)设点的轨迹为曲线,直线两点,过且与垂直的直线与圆交于两点,求的面积之和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如表所示:

产品
资源

甲产品
(每吨)

乙产品
(每吨)

资源限额
(每天)

煤(t

9

4

360

电力(kw·h

4

5

200

劳力(个)

3

10

300

利润(万元)

7

12


问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图空间四边形ABCD,E、F、G、H分别为AB、AD、CB、CD的中点且AC=BD,AC⊥BD,试判断四边形EFGH的形状,并证明.

查看答案和解析>>

同步练习册答案