精英家教网 > 高中数学 > 题目详情
已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则(  )
A.a>0,4a+b=0B.a<0,4a+b=0
C.a>0,2a+b=0D.a<0,2a+b=0
A
由f(0)=f(4)>f(1),可得函数图象开口向上,即a>0,且对称轴-=2,所以4a+b=0,故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知二次函数的二次项系数为,且不等式的解集为(1,3).
⑴若方程有两个相等实数根,求的解析式.
⑵若的最大值为正数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆c:(a>b>0)的离心率为,过其右焦点F与长轴垂直的弦长为1,
(1)求椭圆C的方程;
(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:函数y=f(x),x∈R,满足f(1)=2,f(x+y)=f(x)*f(y),且f(x)是增函数,
(1)证明:f(0)=1;
(2)若f(2x)*f(x2-1)≥4成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若二次函数f(x)=ax2+bx+c(a≠0)的图象和直线y=x无交点,现有下列结论:①方程f(f(x))=x一定没有实数根;
②若a>0,则不等式f(f(x))>x对一切实数x都成立;
③若a<0,则必存在实数x0,使f(f(x0))>x0;
④若a+b+c=0,则不等式f(f(x))<x对一切实数都成立;
⑤函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点.
其中正确的结论是    (写出所有正确结论的编号). 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的图象和函数的图象的交点个数是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=ln(4+3x-x2)的递减区间是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在R上的偶函数f(x)满足:?x∈R恒有f(x+2)=f(x)-f(1).且当x∈[2,3]时,f(x)=-2(x-3)2.若函数y=f(x)-loga(x+1)在(0,+∞)上至少有三个零点,则实数a的取值范围为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,且,则          .

查看答案和解析>>

同步练习册答案