精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱锥的三个侧面均为边长是的等边三角形, 分别为 的中点.

(I)求的长.

(II)求证:

(III)求三棱锥的表面积.

【答案】(1) ;(2)详见解析;(3) .

【解析】试题分析:(1) 连接 等边中, 同理可得等腰中, ;(2)由线面垂直的判定定理证明平面;(3) 三棱锥的三个侧面均为边长为的等边三角形,底面仍为边长为的等边三角形,分别求出各面的面积求和即三棱锥的表面积.

试题解析:

(I)连接

在等边中,

边上中点,

同理可得

在等腰中,

边上中点,

(II)证明:

点,

平面

平面

(III)三棱锥的三个侧面均为边长为的等边三角形,

则底面中,

底面仍为边长为的等边三角形,

表面积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系内三点.

(1) 求过三点的圆的方程,并指出圆心坐标与圆的半径

(2)求过点与条件 (1) 的圆相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.某几何体如图所示, 平面 是边长为的正三角形, ,点分别是的中点.

I)求证: 平面

II)求证:平面平面

III)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体的棱长为分别是棱的中点,过直线的平面分别与棱交于给出以下四个命题

平面平面

当且仅当时,四边形的面积最小

四边形周长是单调函数

四棱锥的体积为常函数

以上命题中假命题的序号为( ).

A. ①④ B. C. D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥S﹣ABC中,SA⊥AB,SA⊥AC,AC⊥BC且AC=2,BC= , SB=
(1)证明:SC⊥BC;
(2)求三棱锥的体积VS﹣ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形,过平面,再过于点,过于点

Ⅰ)求证:

Ⅱ)若平面于点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t≤1,C组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:

(1)此次抽查的学生数为人;
(2)补全条形统计图;
(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是
(4)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如表:

分组

频数

合计

(1)画出频率分布表,并画出频率分布直方图;

2)估计纤度落在中的概率及纤度小于的概率是多少?

3)从频率分布直方图估计出纤度的众数、中位数和平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球2次均未命中的概率为

(1)乙投球的命中率

(2)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望。

查看答案和解析>>

同步练习册答案