精英家教网 > 高中数学 > 题目详情
如图,圆O与离心率为的椭圆T:(a>b>0)相切于点M(0,1).
(1)求椭圆T与圆O的方程;
(2)过点M引两条互相垂直的两直线l1、l2与两曲线分别交于点A、C与点B、D(均不重合).
①若P为椭圆上任一点,记点P到两直线的距离分别为d1、d2,求的最大值;
②若,求l1与l2的方程.

【答案】分析:(1)由题意可知圆的半径等于1,椭圆的短半轴等于1,根据e=,结合a2=b2+c2求出椭圆的长半轴,则椭圆方程和圆的方程可求;
(2)①因为两直线l1、l2相互垂直,所以点P到两直线的距离d1、d2的平方和可转化为P点到M点距离的平方,利用点P在椭圆上把要求的式子化为含P点纵坐标的函数,利用二次函数可求最大值;
②设出直线l1的方程,分别和圆的方程及椭圆方程联立A,C点的坐标,利用置换k的方法求出B,D点的坐标,分别写出向量的坐标,代入若中求出k的值,则l1与l2的方程的方程可求.
解答:解:(1)由题意知:,b=1.
又a2=b2+c2,所以a2=c2+1,
联立,解得a=2,c=
所以椭圆C的方程为.圆O的方程x2+y2=1;
(2)①设P(x,y)因为l1⊥l2,则
因为,所以=
因为-1≤y≤1,所以当时,取得最大值为,此时点
②设l1的方程为y=kx+1,
,得:(k2+1)x2+2kx=0,由xA≠0,所以
代入y=kx+1得:
所以
,得(4k2+1)x2+8kx=0,由xC≠0,所以
代入y=kx+1得:
所以
把A,C中的k置换成可得
所以



=
整理得:,即3k4-4k2-4=0,解得
所以l1的方程为,l2的方程为
或l1的方程为,l2的方程为
点评:本题考查了圆的标准方程,椭圆的标准方程,直线和圆锥曲线的位置关系,考查了数学转化思想和方程思想方法,训练了学生的计算能力,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:如图,圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
2
2
的椭圆,其左焦点为F,若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆的左准线l于点Q.
(1)求椭圆的标准方程;
(2)若点P的坐标为(1,1),
①求线段PQ的长;
②求证:直线PQ与圆O相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞二模)如图,圆O与离心率为
3
2
的椭圆T:
x2
a2
+
y2
b2
=1
(a>b>0)相切于点M(0,1).
(1)求椭圆T与圆O的方程;
(2)过点M引两条互相垂直的两直线l1、l2与两曲线分别交于点A、C与点B、D(均不重合).
①若P为椭圆上任一点,记点P到两直线的距离分别为d1、d2,求
d
2
1
+
d
2
2
的最大值;
②若3
MA
MC
=4
MB
MD
,求l1与l2的方程.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏苏州高级中学高三12月月考数学试卷(解析版) 题型:解答题

如图,圆O与离心率为的椭圆T:)相切于点M

⑴求椭圆T与圆O的方程;

⑵过点M引两条互相垂直的两直线与两曲线分别交于点A、C与点B、D(均不重合)。

①若P为椭圆上任一点,记点P到两直线的距离分别为,求的最大值;

②若,求的方程。

 

查看答案和解析>>

科目:高中数学 来源:2013年江苏省盐城市高考数学二模试卷(解析版) 题型:解答题

如图,圆O与离心率为的椭圆T:(a>b>0)相切于点M(0,1).
(1)求椭圆T与圆O的方程;
(2)过点M引两条互相垂直的两直线l1、l2与两曲线分别交于点A、C与点B、D(均不重合).
①若P为椭圆上任一点,记点P到两直线的距离分别为d1、d2,求的最大值;
②若,求l1与l2的方程.

查看答案和解析>>

同步练习册答案